cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A056450 a(n) = (3*2^n - (-2)^n)/2.

Original entry on oeis.org

1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296
Offset: 0

Views

Author

Keywords

Comments

Number of palindromes of length n using a maximum of four different symbols.
Number of achiral rows of n colors using up to four colors. - Robert A. Russell, Nov 09 2018
Interleaving of A000302 and 4*A000302.
Unsigned version of A141125.
Binomial transform is A164907. Second binomial transform is A164908. Third binomial transform is A057651. Fourth binomial transform is A016129.

Examples

			At length n=1 there are a(1)=4 palindromes, A, B, C, D.
At length n=2, there are a(2)=4 palindromes, AA, BB, CC, DD.
At length n=3, there are a(3)=16 palindromes, AAA, BBB, CCC, DDD, ABA, BAB, ... , CDC, DCD.
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Column k=4 of A321391.
Cf. A016116.
Essentially the same as A213173.
Cf. A000302 (oriented), A032121 (unoriented), A032087(n>1) (chiral).

Programs

  • Magma
    [ (3*2^n-(-2)^n)/2: n in [0..31] ];
    
  • Magma
    [4^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
    
  • Mathematica
    Table[4^Ceiling[n/2], {n,0,40}] (* or *)
    CoefficientList[Series[(1 + 4 x)/((1 + 2 x) (1 - 2 x)), {x, 0, 31}], x] (* or *)
    LinearRecurrence[{0, 4}, {1, 4}, 40] (* Robert A. Russell, Nov 07 2018 *)
  • PARI
    a(n)=4^((n+1)\2) \\ Charles R Greathouse IV, Apr 08 2012
    
  • PARI
    a(n)=(3*2^n-(-2)^n)/2 \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = 4^floor((n+1)/2).
a(n) = 4*a(n-2) for n > 1; a(0) = 1, a(1) = 4.
G.f.: (1+4*x) / (1-4*x^2). - R. J. Mathar, Jan 19 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 4*abs(A164111(n-1)). - R. J. Mathar, Jan 19 2011
a(n) = C(4,0)*A000007(n) + C(4,1)*A057427(n) + C(4,2)*A056453(n) + C(4,3)*A056454(n) + C(4,4)*A056455(n). - Robert A. Russell, Nov 08 2018

Extensions

a(0)=1 prepended by Robert A. Russell, Nov 07 2018
Edited by N. J. A. Sloane, Sep 29 2019

A164908 a(n) = (3*4^n - 0^n)/2.

Original entry on oeis.org

1, 6, 24, 96, 384, 1536, 6144, 24576, 98304, 393216, 1572864, 6291456, 25165824, 100663296, 402653184, 1610612736, 6442450944, 25769803776, 103079215104, 412316860416, 1649267441664, 6597069766656, 26388279066624, 105553116266496, 422212465065984, 1688849860263936
Offset: 0

Views

Author

Klaus Brockhaus, Aug 31 2009

Keywords

Comments

Binomial transform of A164907. Inverse binomial transform of A057651.
Partial sums are in A083420.
Decimal representations of the n-th iterations of elementary cellular automata rules 14, 46, 142 and 174 generate this sequence (see A266298 and A266299). - Karl V. Keller, Jr., Aug 31 2021

Crossrefs

Equals 1 followed by A002023 (6*4^n). Essentially the same as A084509.

Programs

Formula

a(n) = 4*a(n-1) for n > 1; a(0) = 1, a(1) = 6.
G.f.: (1+2*x)/(1-4*x).
a(n) = floor(6*4^(n-1)). - Karl V. Keller, Jr., Aug 30 2021
E.g.f.: (3*exp(4*x) - 1)/2. - Elmo R. Oliveira, Mar 31 2025
Showing 1-2 of 2 results.