A056450 a(n) = (3*2^n - (-2)^n)/2.
1, 4, 4, 16, 16, 64, 64, 256, 256, 1024, 1024, 4096, 4096, 16384, 16384, 65536, 65536, 262144, 262144, 1048576, 1048576, 4194304, 4194304, 16777216, 16777216, 67108864, 67108864, 268435456, 268435456, 1073741824, 1073741824, 4294967296
Offset: 0
Examples
At length n=1 there are a(1)=4 palindromes, A, B, C, D. At length n=2, there are a(2)=4 palindromes, AA, BB, CC, DD. At length n=3, there are a(3)=16 palindromes, AAA, BBB, CCC, DDD, ABA, BAB, ... , CDC, DCD.
References
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..2000
- Sean A. Irvine, Walks on Graphs.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (0,4).
Crossrefs
Programs
-
Magma
[ (3*2^n-(-2)^n)/2: n in [0..31] ];
-
Magma
[4^Floor((n+1)/2): n in [0..40]]; // Vincenzo Librandi, Aug 16 2011
-
Mathematica
Table[4^Ceiling[n/2], {n,0,40}] (* or *) CoefficientList[Series[(1 + 4 x)/((1 + 2 x) (1 - 2 x)), {x, 0, 31}], x] (* or *) LinearRecurrence[{0, 4}, {1, 4}, 40] (* Robert A. Russell, Nov 07 2018 *)
-
PARI
a(n)=4^((n+1)\2) \\ Charles R Greathouse IV, Apr 08 2012
-
PARI
a(n)=(3*2^n-(-2)^n)/2 \\ Charles R Greathouse IV, Oct 03 2016
Formula
a(n) = 4^floor((n+1)/2).
a(n) = 4*a(n-2) for n > 1; a(0) = 1, a(1) = 4.
G.f.: (1+4*x) / (1-4*x^2). - R. J. Mathar, Jan 19 2011 [Adapted to offset 0 by Robert A. Russell, Nov 07 2018]
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 4*abs(A164111(n-1)). - R. J. Mathar, Jan 19 2011
Extensions
a(0)=1 prepended by Robert A. Russell, Nov 07 2018
Edited by N. J. A. Sloane, Sep 29 2019
Comments