cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096053 a(n) = (3*9^n - 1)/2.

Original entry on oeis.org

1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681
Offset: 0

Views

Author

Benoit Cloitre, Jun 18 2004

Keywords

Comments

Generalized NSW numbers. - Paul Barry, May 27 2005
Counts total area under elevated Schroeder paths of length 2n+2, where area under a horizontal step is weighted 3. Case r=4 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315. Fifth binomial transform of (1+8x)/(1-16x^2), A107906. - Paul Barry, May 27 2005
Primes in this sequence include: a(2) = 13, a(4) = 1093, a(7) = 797161. Semiprimes in this sequence include: a(3) = 121 = 11^2, a(5) = 9841 = 13 * 757, a(6) = 88573 = 23 * 3851, a(9) = 64570081 = 1871 * 34511, a(10) = 581130733 = 1597 * 363889, a(12) = 47071589413 = 47 * 1001523179, a(19) = 225141952945498681 = 13097927 * 17189128703.
Sum of divisors of 9^n. - Altug Alkan, Nov 10 2015

Crossrefs

Cf. A107903, A138894 ((5*9^n-1)/4).

Programs

Formula

From Paul Barry, May 27 2005: (Start)
G.f.: (1+3*x)/(1-10*x+9*x^2);
a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*4^k;
a(n) = ((1+sqrt(4))*(5+2*sqrt(4))^n+(1-sqrt(4))*(5-2*sqrt(4))^n)/2. (End)
a(n-1) = (-9^n/3)*B(2n,1/3)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k)=B(k,0) is the k-th Bernoulli number.
a(n) = 10*a(n-1) - 9*a(n-2).
a(n) = 9*a(n-1) + 4. - Vincenzo Librandi, Nov 01 2011
a(n) = A000203(A001019(n)). - Altug Alkan, Nov 10 2015
a(n) = A320030(3^n-1). - Nathan M Epstein, Jan 02 2019

Extensions

Edited by N. J. A. Sloane, at the suggestion of Andrew S. Plewe, Jun 15 2007

A102591 a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*3^(n-k).

Original entry on oeis.org

1, 6, 44, 328, 2448, 18272, 136384, 1017984, 7598336, 56714752, 423324672, 3159738368, 23584608256, 176037912576, 1313964867584, 9807567290368, 73204678852608, 546407161659392, 4078438577864704, 30441879976280064
Offset: 0

Views

Author

Paul Barry, Jan 22 2005

Keywords

Comments

In general, Sum_{k=0..n} binomial(2n+1,2k)*r^(n-k) has g.f. (1-(r-1)x)/(1-2(r+1)+(r-1)^2x^2) and a(n) = ((sqrt(r)-1)^(2n+1) + (sqrt(r)+1)^(2n+1))/(2*sqrt(r)).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{8,-4},{1,6},20] (* Harvey P. Dale, Sep 28 2021 *)

Formula

G.f.: (1-2x)/(1-8x+4x^2);
a(n) = 8*a(n-1) - 4*a(n-2);
a(n) = sqrt(3)*(sqrt(3)-1)^(2n+1)/6 + sqrt(3)*(sqrt(3)+1)^(2n+1)/6.
a(n) = 2^n*A079935(n). - R. J. Mathar, Sep 20 2012
a(n) = 2^(2*n+1)*Sum_{k >= n} binomial(2*k,2*n)*(1/3)^(k+1). Cf. A099156. - Peter Bala, Nov 29 2021
3*a(n)^2 = A107903(n)^2 + 2^(2*n+1). - Philippe Deléham, Mar 21 2023

A180028 Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 3*x)/(1 - 6*x - 3*x^2).

Original entry on oeis.org

1, 9, 57, 369, 2385, 15417, 99657, 644193, 4164129, 26917353, 173996505, 1124731089, 7270376049, 46996449561, 303789825513, 1963728301761, 12693739287105, 82053620627913, 530402941628793, 3428578511656497
Offset: 0

Views

Author

Johannes W. Meijer, Aug 09 2010; edited Jun 21 2013

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the center square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the center square (off the center square the piece behaves like a normal queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the center square the 512 red queens lead to 17 red queen sequences, see the overview of red queen sequences and the crossreferences.
The sequence above corresponds to just one red queen vector, i.e., A[5] = [111 111 111] vector. The other squares lead for this vector to A090018.
This sequence belongs to a family of sequences with g.f. (1+k*x)/(1 - 6*x - k*x^2). The members of this family that are red queen sequences are A180028 (k=3; this sequence), A180029 (k=2), A015451 (k=1), A000400 (k=0), A001653 (k=-1), A180034 (k=-2), A084120 (k=-3), A154626 (k=-4) and A000012 (k=-5). Other members of this family are A123362 (k=5), 6*A030192(k=-6).
Inverse binomial transform of A107903.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.

Crossrefs

Cf. A180140 (berserker sequences)
Cf. A180032 (Corner and side squares).
Cf. Red queen sequences center square [decimal value A[5]]: A180028 [511], A180029 [255], A180031 [495], A015451 [127], A152240 [239], A000400 [63], A057088 [47], A001653 [31], A122690 [15], A180034 [23], A180036 [7], A084120 [19], A180038 [3], A154626 [17], A015449 [1], A000012 [16], A000007 [0].

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else 6*Self(n-1)+3*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
  • Maple
    nmax:=19; m:=5; A[1]:=[0,1,1,1,1,0,1,0,1]: A[2]:=[1,0,1,1,1,1,0,1,0]: A[3]:=[1,1,0,0,1,1,1,0,1]: A[4]:=[1,1,0,0,1,1,1,1,0]: A[5]:=[1,1,1,1,1,1,1,1,1]: A[6]:=[0,1,1,1,1,0,0,1,1]: A[7]:=[1,0,1,1,1,0,0,1,1]: A[8]:=[0,1,0,1,1,1,1,0,1]: A[9]:=[1,0,1,0,1,1,1,1,0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{6,3},{1,9},50] (* Vincenzo Librandi, Nov 15 2011 *)

Formula

G.f.: (1+3*x)/(1 - 6*x - 3*x^2).
a(n) = 6*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 9.
a(n) = ((1-A)*A^(-n-1) + (1-B)*B^(-n-1))/4 with A=(-1+2*sqrt(3)/3) and B=(-1-2*sqrt(3)/3).
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A108411(n+1)/(A041017(n-1)*sqrt(12) - A041016(n-1)) for n >= 1.

A270444 Expansion of 2*(1+2*x) / (1-8*x+4*x^2).

Original entry on oeis.org

2, 20, 152, 1136, 8480, 63296, 472448, 3526400, 26321408, 196465664, 1466439680, 10945654784, 81699479552, 609813217280, 4551707820032, 33974409691136, 253588446248960, 1892809931227136, 14128125664821248, 105453765593661440
Offset: 1

Views

Author

Altug Alkan, Mar 17 2016

Keywords

Comments

If p is an odd prime, a((p+1)/2) == 2 mod p. In other words, a((p+1)/2) - 2^p is divisible by p where p is an odd prime.

Examples

			a(2) = 20 because (1 + sqrt(3))^3 + (1 - sqrt(3))^3 = 20.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2(1+2x)/(1-8x+4x^2),{x,0,30}],x] (* or *) LinearRecurrence[{8,-4},{2,20},30] (* Harvey P. Dale, Jun 09 2020 *)
  • PARI
    Vec(2*(1+2*x)/(1-8*x+4*x^2) + O(x^100))

Formula

G.f.: 2*(1+2*x)/(1-8*x+4*x^2).
a(n) = (1+sqrt(3))^(2*n-1) + (1-sqrt(3))^(2*n-1).
a(n) = 2 * A107903(n-1).

A107904 Expansion of (1+6x)/(1-12x^2).

Original entry on oeis.org

1, 6, 12, 72, 144, 864, 1728, 10368, 20736, 124416, 248832, 1492992, 2985984, 17915904, 35831808, 214990848, 429981696, 2579890176, 5159780352, 30958682112, 61917364224, 371504185344, 743008370688, 4458050224128, 8916100448256, 53496602689536, 106993205379072
Offset: 0

Views

Author

Paul Barry, May 27 2005

Keywords

Comments

Fourth binomial transform is A107903.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,12},{1,6},30] (* Harvey P. Dale, Sep 22 2014 *)

Formula

a(n) = ((1+sqrt(3))*(2*sqrt(3))^n + (1-sqrt(3))*(-2*sqrt(3))^n)/2.
a(2n) = 12^n, a(2n+1) = 6*12^n.
a(n) = 2^n*A108411(n+1). - R. J. Mathar, Aug 15 2023
From Amiram Eldar, Dec 06 2024: (Start)
Sum_{n>=0} 1/a(n) = 14/11.
Sum_{n>=0} (-1)^n/a(n) = 10/11. (End)
Showing 1-5 of 5 results.