cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096053 a(n) = (3*9^n - 1)/2.

Original entry on oeis.org

1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681
Offset: 0

Views

Author

Benoit Cloitre, Jun 18 2004

Keywords

Comments

Generalized NSW numbers. - Paul Barry, May 27 2005
Counts total area under elevated Schroeder paths of length 2n+2, where area under a horizontal step is weighted 3. Case r=4 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315. Fifth binomial transform of (1+8x)/(1-16x^2), A107906. - Paul Barry, May 27 2005
Primes in this sequence include: a(2) = 13, a(4) = 1093, a(7) = 797161. Semiprimes in this sequence include: a(3) = 121 = 11^2, a(5) = 9841 = 13 * 757, a(6) = 88573 = 23 * 3851, a(9) = 64570081 = 1871 * 34511, a(10) = 581130733 = 1597 * 363889, a(12) = 47071589413 = 47 * 1001523179, a(19) = 225141952945498681 = 13097927 * 17189128703.
Sum of divisors of 9^n. - Altug Alkan, Nov 10 2015

Crossrefs

Cf. A107903, A138894 ((5*9^n-1)/4).

Programs

Formula

From Paul Barry, May 27 2005: (Start)
G.f.: (1+3*x)/(1-10*x+9*x^2);
a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*4^k;
a(n) = ((1+sqrt(4))*(5+2*sqrt(4))^n+(1-sqrt(4))*(5-2*sqrt(4))^n)/2. (End)
a(n-1) = (-9^n/3)*B(2n,1/3)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k)=B(k,0) is the k-th Bernoulli number.
a(n) = 10*a(n-1) - 9*a(n-2).
a(n) = 9*a(n-1) + 4. - Vincenzo Librandi, Nov 01 2011
a(n) = A000203(A001019(n)). - Altug Alkan, Nov 10 2015
a(n) = A320030(3^n-1). - Nathan M Epstein, Jan 02 2019

Extensions

Edited by N. J. A. Sloane, at the suggestion of Andrew S. Plewe, Jun 15 2007

A107903 Generalized NSW numbers.

Original entry on oeis.org

1, 10, 76, 568, 4240, 31648, 236224, 1763200, 13160704, 98232832, 733219840, 5472827392, 40849739776, 304906608640, 2275853910016, 16987204845568, 126794223124480, 946404965613568, 7064062832410624, 52726882796830720
Offset: 0

Views

Author

Paul Barry, May 27 2005

Keywords

Comments

Counts total area under elevated Schroeder paths of length 2n+2, where horizontal steps can choose from three colors.
Case r=3 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315 and case r=4 gives NSW numbers A096053.
Fifth binomial transform of (1+8x)/(1-16x^2), A107906.
If p is an odd prime, a((p-1)/2) == 1 mod p. - Altug Alkan, Mar 17 2016

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2 n + 1, 2 k] 3^k, {k, 0, n}], {n, 0, 20}] (* or *) CoefficientList[Series[(1 + 2 x)/(1 - 8 x + 4 x^2), {x, 0, 20}], x] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    Vec((1+2*x)/(1-8*x+4*x^2) + O(x^40)) \\ Michel Marcus, Mar 17 2016

Formula

G.f.: (1+2*x)/(1-8*x+4*x^2). [corrected by Ralf Stephan, Nov 30 2010]
a(n) = Sum_{k=0..n} binomial(2*n+1, 2*k)*3^k.
a(n) = ((1+sqrt(3))*(4+2*sqrt(3))^n+(1-sqrt(3))*(4-2*sqrt(3))^n)/2 = A099156(n+1)+2*A099156(n).
a(n) = 8*a(n-1) - 4*a(n-2); a(0) = 1, a(1) = 10. - Lekraj Beedassy, Apr 19 2020
a(n) = 2^n*A001834(n). - Philippe Deléham, Mar 18 2023

Extensions

Typo corrected and link added by Johannes W. Meijer, Aug 07 2010
Showing 1-2 of 2 results.