cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215975 The integers floor((1.1)^k(n))/floor((1.1)^n) arising in A069751, where k(n) = A069751(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 2, 1, 5, 2, 1, 9, 5, 3, 6, 9, 2, 2, 2, 9, 9, 9, 22680, 31, 2, 34, 3335, 31, 9, 10, 881, 9450, 9450, 7875, 3637, 3637, 34, 130, 199394, 10364, 25784652043917, 73, 28372148, 3000, 348729431334264344425340064330765473421034034140890, 21279111, 6774778, 31, 3157469, 595, 182493908282594631, 1400, 13928971534455392
Offset: 1

Views

Author

N. J. A. Sloane, Aug 29 2012

Keywords

Comments

Created to provide a check on the calculations in A096151.

Crossrefs

Cf. A069751.

Programs

  • Mathematica
    kln2[n_] :=  Module[{k = n + 1, den = Floor[ (11/10)^n]}, While[ ! IntegerQ[Floor[(11/10)^k]/den], k++]; Floor[(11/10)^k]/den]; Array[kln2,70] (* Harvey P. Dale, Aug 29 2012 *)

A235861 Regular continued fraction expansion of square root of 4729494.

Original entry on oeis.org

2174, 1, 2, 1, 5, 2, 25, 3, 1, 1, 1, 1, 1, 1, 15, 1, 2, 16, 1, 2, 1, 1, 8, 6, 1, 21, 1, 1, 3, 1, 1, 1, 2, 2, 6, 1, 1, 5, 1, 17, 1, 1, 47, 3, 1, 1, 6, 1, 1, 3, 47, 1, 1, 17, 1, 5, 1, 1, 6, 2, 2, 1, 1, 1, 3, 1, 1, 21, 1, 6, 8, 1, 1, 2, 1, 16, 2, 1, 15, 1, 1, 1, 1, 1, 1, 3, 25, 2, 5, 1, 2, 1, 4348
Offset: 0

Views

Author

Carsten Elsner, Jan 16 2014

Keywords

Comments

This continued fraction is needed to solve completely Archimedes' cattle problem.
See Mathematica program in A096151. - Robert G. Wilson v, Dec 06 2014

Crossrefs

Cf. A096151.

Programs

  • Maple
    cfrac(sqrt(4729494),500,quotients);
  • Mathematica
    ContinuedFraction@ Sqrt@ 4729494 // Flatten (* Robert G. Wilson v, Dec 06 2014 *)
  • PARI
    default(realprecision, 100); contfrac(sqrt(4729494)) \\ Michel Marcus, Mar 12 2015

Formula

a(n+92) = a(n) for n>0.
Showing 1-2 of 2 results.