cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096290 Prime power perfect numbers: If n = Product p_i^r_i let PPsigma(n) = Product {Sum p_i^s_i, 2<=s_i<=r_i, s_i is prime}; sequence gives numbers k such that PPsigma(k) = 2*k.

Original entry on oeis.org

216, 5400, 10584, 26136, 36504, 62424, 77976, 114264, 181656, 207576, 264600, 295704, 363096, 399384, 477144, 606744, 653400, 751896, 803736, 912600, 969624, 1088856, 1149984, 1151064, 1280664, 1348056, 1488024, 1560600, 1710936, 1788696, 1949400, 2032344, 2203416
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jun 24 2004

Keywords

Examples

			5400 is in the sequence because 5400 = 2^3*3^3*5^2 and (2^2+2^3)*(3^2+3^3)*(5^2) = 2*5400.
		

Crossrefs

Cf. A100509.

Programs

  • Maple
    PPsigma := proc(n)
        option remember;
        local a, pe, p, e,f,i ;
        a := 1 ;
        for pe in ifactors(n)[2] do
            p := op(1, pe) ;
            e := op(2, pe) ;
            f := 0 ;
            for i from 2 to e do
                if isprime(i) then
                    f := f+p^i ;
                end if;
            end do:
            a := a*f ;
        end do;
        a ;
    end proc:
    for n from 1 do
        if PPsigma(n) = 2*n then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Mar 13 2024
  • Mathematica
    f[p_, e_] := Plus @@ (p^Select[Range[e], PrimeQ]); s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300000], s[#] == 2*# &] (* Amiram Eldar, Sep 19 2022 *)

Extensions

Corrected and extended by Farideh Firoozbakht, Nov 17 2004
More terms from Amiram Eldar, Sep 19 2022