A096290 Prime power perfect numbers: If n = Product p_i^r_i let PPsigma(n) = Product {Sum p_i^s_i, 2<=s_i<=r_i, s_i is prime}; sequence gives numbers k such that PPsigma(k) = 2*k.
216, 5400, 10584, 26136, 36504, 62424, 77976, 114264, 181656, 207576, 264600, 295704, 363096, 399384, 477144, 606744, 653400, 751896, 803736, 912600, 969624, 1088856, 1149984, 1151064, 1280664, 1348056, 1488024, 1560600, 1710936, 1788696, 1949400, 2032344, 2203416
Offset: 1
Keywords
Examples
5400 is in the sequence because 5400 = 2^3*3^3*5^2 and (2^2+2^3)*(3^2+3^3)*(5^2) = 2*5400.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A100509.
Programs
-
Maple
PPsigma := proc(n) option remember; local a, pe, p, e,f,i ; a := 1 ; for pe in ifactors(n)[2] do p := op(1, pe) ; e := op(2, pe) ; f := 0 ; for i from 2 to e do if isprime(i) then f := f+p^i ; end if; end do: a := a*f ; end do; a ; end proc: for n from 1 do if PPsigma(n) = 2*n then print(n) ; end if; end do: # R. J. Mathar, Mar 13 2024
-
Mathematica
f[p_, e_] := Plus @@ (p^Select[Range[e], PrimeQ]); s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[300000], s[#] == 2*# &] (* Amiram Eldar, Sep 19 2022 *)
Extensions
Corrected and extended by Farideh Firoozbakht, Nov 17 2004
More terms from Amiram Eldar, Sep 19 2022