cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A100509 Primitive prime power perfect numbers: A096290, with multiples of earlier numbers excluded.

Original entry on oeis.org

216, 1149984, 365727111552, 1590733122516339863159808000
Offset: 1

Views

Author

Yasutoshi Kohmoto, Nov 24 2004

Keywords

Crossrefs

Cf. A096290.

A126849 Sum over the divisors d of n constrained to cases where all exponents of the prime factorization of d are prime.

Original entry on oeis.org

1, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 12, 25, 0, 36, 4, 0, 0, 0, 44, 0, 0, 0, 49, 0, 0, 0, 12, 0, 0, 0, 4, 9, 0, 0, 12, 49, 25, 0, 4, 0, 36, 0, 12, 0, 0, 0, 4, 0, 0, 9, 44, 0, 0, 0, 4, 0, 0, 0, 129, 0, 0, 25, 4, 0, 0, 0, 12, 36, 0, 0, 4, 0, 0, 0, 12, 0, 9, 0, 4, 0, 0, 0, 44
Offset: 1

Views

Author

Yasutoshi Kohmoto, Feb 24 2007

Keywords

Comments

The case a(1) = 1 is set by convention.
Note that this is different from the PPsigma function defined in A096290, where PPsigma(12)=PPsigma(2^2*3^1)=0 since the factor 3^1 appears with an exponent too small to yield a nonzero sum.

Examples

			a(12) = 2^2 = 4 because 4 is the only divisor of the divisors set 1, 2 = 2^1, 3 = 3^1, 4 = 2^2, 6 = 2^1 * 3^1, 12 = 2^2 * 3^1 for which all the exponents are prime.
a(9) = 9 because 9 is the only divisor of the set 1, 3 = 3^1, 9 = 3^2 for which all the exponents are prime.
		

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, # &, AllTrue[FactorInteger[#][[All, -1]], PrimeQ] &] &, 96] (* Michael De Vlieger, Nov 17 2017 *)
  • PARI
    vecproduct(v) = { my(m=1); for(i=1,#v,m *= v[i]); m; };
    A293449(n) = vecproduct(apply(e -> isprime(e), factorint(n)[, 2]));
    A126849(n) = if(1==n,n,sumdiv(n,d,(d>1)*A293449(d)*d)); \\ Antti Karttunen, Nov 17 2017
    
  • PARI
    first(n) = {my(res = vector(n)); res[1] = 1; forprime(p = 2, sqrtint(n), forprime(e = 2, logint(n, p), for(k = 1, n \ (p^e), res[k*p^e] += p^e))); res} \\ David A. Corneth, Nov 17 2017

Formula

sum_{d|n, d=product p_j^r_j, all r_j prime} d.
a(1) = 1, and for n > 1, a(n) = Sum_{d|n, d>1} A293449(d)*d. - Antti Karttunen, Nov 17 2017

Extensions

Edited and extended by R. J. Mathar, Jul 10 2009

A095723 0+1+Prime power perfect numbers: if n=Product p_i^r_i then 01PPsigma(n)= Product {Sum p_i^r_i, 0<=s_i<=r_i, s_i is 0 or one or prime} 01PPsigma(n)=2*n.

Original entry on oeis.org

6, 28, 4512, 65520, 694400
Offset: 1

Views

Author

Yasutoshi Kohmoto, Jul 08 2004

Keywords

Comments

Factorizations : 2*3, 2^2*7, 2^5*3*47, 2^4*3^2*5*7*13, 2^7*5^2*7*31
No other terms < 3000000000. - Jud McCranie, Jul 16 2004

Examples

			01PPsigma(2^5*3^3)=(1+2+2^2+2^3+2^5)*(1+3+3^2+3^3)=1880
All exponents of the terms are 0 or 1 or prime.
		

Crossrefs

A095682 Primitive 1+prime power perfect numbers: if n=Product p_i^r_i then 1PPsigma(n)= Product {Sum p_i^r_i, 1<=s_i<=r_i, s_i is one or prime} 1PPsigma(n)=2*n.

Original entry on oeis.org

36, 392, 152352, 6072901632, 1444601174400
Offset: 1

Views

Author

Keywords

Comments

Factorizations: 2^2*3^2, 2^3*7^2, 2^5*3^2*23^2, 2^13*3^2*7^2*41^2, 2^7*3^5*5^2*29^2*47^2. No squarefree solution exists.

Examples

			1PPsigma(2^5*3^3)=(2+2^2+2^3+2^5)*(3+3^2+3^3)=1794
		

Crossrefs

Cf. A096290.

A099723 Nonprime-power sigma-perfect numbers: numbers n such that NPPSigma(n)=2*n, where, if n=Product p_i^r_i then NPPSigma(n)=Product{Sum p_i^s_i, s_i is not a prime number, 0<=s_i<=r_i}.

Original entry on oeis.org

6, 4560, 13770, 111552, 256011840
Offset: 1

Views

Author

Yasutoshi Kohmoto, Nov 06 2004

Keywords

Examples

			NPPSigma(2^5*7^4)=(1+2+2^4)*(1+7+7^4)=45771
13770=2*3^4*5*17 so NPPSigma(2*3^4*5*17)=(1+2^1)*(1+3^1+3^4)*(1+5^1)*(1+17^1)=2*13770.
Factorizations : 2*3, 2^4*3*5*19, 13770=2*3^4*5*17, 2^6*3*7*83, ...
		

Crossrefs

Cf. A096290.

Extensions

Corrected and extended by Farideh Firoozbakht, Nov 07 2004
Showing 1-5 of 5 results.