cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096332 Number of connected planar graphs on n labeled nodes.

Original entry on oeis.org

1, 1, 4, 38, 727, 26013, 1597690, 149248656, 18919743219, 3005354096360, 569226803220234, 124594074249852576, 30861014504270954737, 8520443838646833231236, 2592150684565935977152860, 861079753184429687852978432, 310008316267496041749182487881
Offset: 1

Views

Author

Steven Finch, Aug 02 2004

Keywords

Examples

			There are 4 connected labeled planar graphs on 3 nodes:
1-2-3,
1-3-2,
2-1-3 and
1-2
|/
3
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, p. 419.

Crossrefs

Programs

  • PARI
    Q(n,k) = { \\ c-nets with n-edges, k-vertices
      if (k < 2+(n+2)\3 || k > 2*n\3, return(0));
      sum(i=2, k, sum(j=k, n, (-1)^((i+j+1-k)%2)*binomial(i+j-k,i)*i*(i-1)/2*
      (binomial(2*n-2*k+2,k-i)*binomial(2*k-2, n-j) -
      4*binomial(2*n-2*k+1, k-i-1)*binomial(2*k-3, n-j-1))));
    };
    A100960_ser(N) = {
    my(x='x+O('x^(3*N+1)), t='t+O('t^(N+4)),
       q=t*x*Ser(vector(3*N+1, n, Polrev(vector(min(N+3, 2*n\3), k, Q(n,k)),'t))),
       d=serreverse((1+x)/exp(q/(2*t^2*x) + t*x^2/(1+t*x))-1),
       g2=intformal(t^2/2*((1+d)/(1+x)-1)));
       serlaplace(Ser(vector(N, n, subst(polcoeff(g2, n,'t),'x,'t)))*'x);
    };
    A096331_seq(N) = Vec(subst(A100960_ser(N+2),'t,1));
    A096332_seq(N) = {
      my(x='x+O('x^(N+3)), b=x^2/2+serconvol(Ser(A096331_seq(N))*x^3, exp(x)));
      Vec(serlaplace(intformal(serreverse(x/exp(b'))/x)));
    };
    A096332_seq(15) \\ Gheorghe Coserea, Aug 10 2017

Formula

This is generated by log(1+g(x)), where g(x) is the e.g.f. for labeled planar graphs, which may be computed from recurrences in Bodirsky et al. - Keith Briggs, Feb 04 2005
a(n) ~ c * n^(-7/2) * gamma^n * n!, where c = 0.00000410436110025...(A266392) and gamma = 27.2268777685...(A266390) (see Gimenez and Noy). - Gheorghe Coserea, Feb 24 2016

Extensions

More terms from Keith Briggs, Feb 04 2005
More terms from Alois P. Heinz, Dec 30 2015