A096399 Numbers k such that both k and k+1 are abundant.
5775, 5984, 7424, 11024, 21735, 21944, 26144, 27404, 39375, 43064, 49664, 56924, 58695, 61424, 69615, 70784, 76544, 77175, 79695, 81080, 81675, 82004, 84524, 84644, 89775, 91664, 98175, 103455, 104895, 106784, 109395, 111824, 116655, 116864, 120015, 121904, 122264
Offset: 1
Keywords
Examples
sigma(5775) = sigma(3*5*5*7*11) = 11904 > 2*5775. sigma(5776) = sigma(2*2*2*2*19*19) = 11811 > 2*5776.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Yong-Gao Chen and Hui Lv, On consecutive abundant numbers, arXiv:1603.06176 [math.NT], 2016.
- Paul Erdős, Note on consecutive abundant numbers, J. London Math. Soc., 10 (1935), 128-131.
- Carlos Rivera, Puzzle 878. Consecutive abundant integers, The Prime Puzzles and Problems Connection.
Programs
-
Mathematica
fQ[n_] := DivisorSigma[1, n] > 2 n; Select[ Range@ 117000, fQ[ # ] && fQ[ # + 1] &] (* Robert G. Wilson v, Jun 11 2010 *) Select[Partition[Select[Range[120000], DivisorSigma[1, #] > 2 # &], 2, 1], Differences@ # == {1} &][[All, 1]] (* Michael De Vlieger, May 20 2017 *)
-
PARI
for(i=1,1000000,if(sigma(i)>2*i && sigma(i+1)>2*(i+1),print(i))); \\ Max Alekseyev, Jan 28 2005
Formula
Extensions
Two further terms from Max Alekseyev, Jan 28 2005
Entry revised by N. J. A. Sloane, Dec 03 2006
Edited by T. D. Noe, Nov 15 2010
Comments