cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098066 Duplicate of A096436.

Original entry on oeis.org

1, 2, 3, 1, 2, 3, 4, 2, 1, 2, 3, 3, 2, 3, 4, 4, 3, 2, 3, 4, 4, 3, 4, 5
Offset: 1

Views

Author

Keywords

A005831 a(n+1) = a(n) * (a(n-1) + 1).

Original entry on oeis.org

0, 1, 1, 2, 4, 12, 60, 780, 47580, 37159980, 1768109008380, 65702897157329640780, 116169884340604934905464739377180, 7632697963609645128663145969343357330533515068777580, 886689639639303288926299195509965193299034793881606681727875910370940270908216401980
Offset: 0

Views

Author

Keywords

Comments

A discrete analog of the derivative of t(x) = tetration base e, since t'(x) = t(x) * t(x-1) * t(x-2) * ... y = y * exp(y) * exp(exp(y)) * ... * t(x) This sequence satisfies almost the same equation but the derivative is replaced by a difference, comparable to the relations between differential equations and their associated difference equations. - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Examples

			a(5) = 12 since 12 = 1*2*4 + 4.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a005831 n = a005831_list !! n
    a005831_list = 0:1:zipWith (*) (tail a005831_list) (map succ a005831_list)
    -- Reinhard Zumkeller, Mar 19 2011
  • Mathematica
    a=0;b=1;lst={a,b};Do[c=a*b+b;AppendTo[lst,c];a=b;b=c,{n,18}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 13 2009 *)
    RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1](a[n-2]+1)},a,{n,15}] (* Harvey P. Dale, Aug 17 2013 *)

Formula

a(0) = a(1) = 1, a(2) = 2; a(n) = a(n-1)*a(n-2)*a(n-3)*... + a(n-1). - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008
The sequence grows like a doubly exponential function, similar to Sylvester's sequence. In fact we have the asymptotic form : a(n) ~ e ^ (Phi ^ n) where e and Phi are the best possible constants. - Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A141435 a(1) = 1, a(2) = 2; a(n) = a(n-a(1)) + a(n-a(2)) + a(n-a(3)) + a(n-a(4)) + ...

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 38, 71, 132, 247, 461, 861, 1609, 3005, 5613, 10485, 19584, 36581, 68330, 127632, 238404, 445314, 831798, 1553712, 2902170, 5420945, 10125754, 18913838, 35329048, 65990929, 123264078, 230244265, 430071949, 803328933
Offset: 1

Views

Author

Raes Tom (tommy1729(AT)hotmail.com), Aug 06 2008

Keywords

Comments

Thus we get a self-reference sequence that grows exponentially. a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-6) + a(n-11) + a(n-20) + ...
A Fibonacci-like sequence, even closer to the tribonacci numbers.
Lim n-> oo log (a(n))/n converges.

Examples

			a(6) = 20 because 20 = a(5) + a(4) + a(3) = 11 + 6 + 3
a(8) = 71 because 71 = a(7) + a(6) + a(5) + a(2) = 38 + 20 + 11 + 2
		

Crossrefs

Programs

  • Maple
    A141435 := proc(n) option remember; local a,i; if n <= 3 then RETURN(n); else a :=0 ; for i from 1 to n-1 do if n-procname(i) < 1 then RETURN(a); else a := a+procname(n-procname(i)) ; fi; od; RETURN(a); fi; end: for n from 1 to 80 do printf("%d,",A141435(n)) ; od: # R. J. Mathar, Nov 03 2008
  • Python
    def A141435(terms):
        seq = [1, 2]
        for n in range(3, terms):
            s = 0
            for m in seq:
                if (n - m) > 0:
                    s += seq[n - m - 1] #fix for python indexing
            seq.append(s)
        return seq
    print(A141435(40)) # Andres Cruz y Corro A, Jun 19 2019

Extensions

More terms from R. J. Mathar, Nov 03 2008
Showing 1-3 of 3 results.