cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106152 Decimal expansion of sqrt(Pi^2 - e^2)/(Pi/2).

Original entry on oeis.org

1, 0, 0, 2, 6, 6, 0, 6, 4, 0, 6, 0, 9, 1, 9, 7, 6, 5, 6, 8, 7, 4, 4, 0, 2, 1, 3, 9, 5, 9, 8, 9, 0, 0, 4, 4, 5, 8, 2, 4, 3, 7, 5, 5, 5, 2, 8, 2, 2, 8, 7, 8, 3, 8, 4, 8, 4, 9, 6, 3, 1, 8, 6, 8, 3, 6, 0, 9, 7, 7, 2, 3, 1, 1, 2, 2, 9, 6, 3, 7, 2, 7, 8, 1, 7, 1, 4, 7, 4, 5, 9, 0, 5, 3, 1, 8, 4, 4, 0, 4, 1, 5, 2, 6, 7
Offset: 1

Views

Author

Zak Seidov, May 07 2005

Keywords

Comments

Simple expression with value close to integer.

Examples

			1.0026606406091976568744021395989004458243755528228783848496318683..
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[Pi^2 - E^2]/(Pi/2), 120]][[1]]
  • PARI
    2*sqrt(Pi^2 - exp(2))/Pi \\ G. C. Greubel, Jan 13 2017

Formula

c = sqrt(Pi^2 - e^2)/(Pi/2).

A106153 Decimal expansion of arcsin(sqrt(1 - (e/Pi)^2)) (in degrees), lesser angle in right triangle with hypotenuse Pi and longer leg e.

Original entry on oeis.org

3, 0, 0, 8, 8, 0, 5, 2, 3, 8, 0, 8, 4, 5, 1, 7, 0, 2, 5, 8, 1, 0, 3, 4, 8, 0, 6, 5, 2, 6, 8, 3, 2, 9, 9, 6, 4, 8, 1, 3, 2, 0, 7, 7, 3, 0, 2, 0, 7, 5, 0, 6, 7, 7, 6, 1, 6, 2, 4, 0, 9, 1, 1, 3, 2, 4, 9, 2, 0, 5, 9, 7, 9, 4, 4, 0, 1, 6, 6, 5, 7, 2, 8, 2, 0, 0, 2, 9, 7, 6, 9, 2, 9, 3, 7, 1, 8, 1, 8, 9
Offset: 2

Views

Author

Zak Seidov, May 07 2005

Keywords

Comments

Triangle with hypotenuse Pi, longer leg e and shorter leg close to Pi/2 (and angle close to 30 degrees). Cf. A096437: Decimal expansion of sqrt(Pi^2 - e^2).

Examples

			arcsin(sqrt(1 - (e/Pi)^2))/Pi*180 = 30.08805238... degrees.
		

Crossrefs

Cf. A096437.

Programs

  • Mathematica
    RealDigits[N[ArcSin[Sqrt[Pi^2-E^2]/Pi]/Degree, 100]][[1]]
  • PARI
    asin(sqrt(Pi^2 - exp(2))/Pi)*(180/Pi) \\ G. C. Greubel, May 24 2017

Extensions

Offset corrected by Andrew Howroyd, Sep 01 2024
Showing 1-2 of 2 results.