A096447
Odd primes p such that the number of primes less than p that are congruent to 1 (mod 4) is equal to the number of primes less than p that are congruent to 3 (mod 4).
Original entry on oeis.org
3, 7, 19, 43, 463, 26839, 26861, 26879, 26891, 26903, 26927, 616783, 616799, 616841, 616849, 616877, 617039, 617269, 617369, 617401, 617429, 617453, 617471, 617479, 617521, 617537, 617587, 617689, 617717, 617723, 618439, 618547, 618619, 618643
Offset: 1
-
lim = 10^5; k1 = 0; k3 = 0; p = 2; t = {}; Do[p = NextPrime[p]; If[k1 == k3, AppendTo[t, p]]; If[Mod[p, 4] == 1, k1++, k3++], {lim}]; t (* T. D. Noe, Sep 07 2011 *)
A096448
Primes p such that the number of primes less than p equal to 1 mod 4 is one less than the number of primes less than p equal to 3 mod 4.
Original entry on oeis.org
5, 11, 17, 23, 31, 41, 47, 59, 67, 103, 127, 419, 431, 439, 461, 467, 1259, 1279, 1303, 26833, 26849, 26881, 26893, 26921, 26947, 615883, 616769, 616787, 616793, 616829, 617051, 617059, 617087, 617257, 617473, 617509, 617647, 617681, 617731, 617819, 617879
Offset: 1
First term prime(2) = 3 is placed on 0th row.
If prime(n-1) = +1 mod 4 is on k-th row then we put prime(n) on (k-1)-st row.
If prime(n-1) = -1 mod 4 is on k-th row then we put prime(n) on (k+1)-st row.
This process makes an array of prime numbers:
0th row: 3, 7, 19, 43, ...
1st row: 5, 11, 17, 23, 31, 41, 47, 59, 67, 103, 127, ...
2nd row: 13, 29, 37, 53, 61, 71, 79, 101, 107, 113 ...
3rd row: 73, 83, 97, 109, ...
4th row: 89, ...
-
Prime[#]&/@(Flatten[Position[Accumulate[If[Mod[#,4]==1,1,-1]&/@ Prime[ Range[ 2,51000]]],-1]]+2) (* Harvey P. Dale, Mar 08 2015 *)
-
lista(nn) = my(vp=primes(nn), nb1=0, nb3=0); for (i=2, #vp, my(p = vp[i]); if (nb1 == nb3-1, print1(p, ", ")); if ((p % 4) == 1, nb1++, nb3++);); \\ Michel Marcus, May 30 2024
A096455
Primes p such that the number of primes q, 7 <= q < p, congruent to 1 or 2 mod 5, is two more than the number of such primes congruent to 3 or 4 mod 5.
Original entry on oeis.org
13, 19, 43, 53, 71, 79, 139, 163, 173, 193, 199, 223, 229, 263, 281, 293, 311, 317, 383, 409, 433, 593, 613, 619, 641, 647, 659, 673, 683, 701, 719, 733, 769, 809, 821, 827, 839, 911, 929, 941, 1151, 1163, 1181, 1231, 1277, 1283, 1301, 1307, 1321, 1439, 1451
Offset: 1
-
Prime[#+4]&/@Flatten[Position[Accumulate[Table[Which[Mod[n,5] == 1,1,Mod[ n,5] == 2,1,Mod[ n,5] == 3,-1,Mod[n,5]==4,-1],{n,Prime[ Range[ 4,250]]}]],2]] (* Harvey P. Dale, Aug 29 2021 *)
A096450
Primes p such that the number of primes q, 7 <= q < p, congruent to 1 or 2 mod 5, is equal to the number of such primes congruent to 3 or 4 mod 5.
Original entry on oeis.org
7, 29, 37, 61, 89, 101, 107, 113, 131, 151, 181, 239, 251, 271, 397, 421, 443, 463, 479, 491, 503, 557, 569, 577, 601, 743, 757, 787, 857, 863, 881, 887, 1291, 1511, 1531, 1549, 1609, 1657, 1667, 1693, 1699, 1861, 1987, 1997, 2003, 2017, 2053, 2377, 2393
Offset: 1
Showing 1-4 of 4 results.
Comments