A096541 Number of parts unequal to 1 in all partitions of the integer n. Also the difference between the labeled and the unlabeled case of one-element transitions from the partitions of n to the partitions of n+1.
0, 0, 1, 2, 5, 8, 16, 24, 41, 61, 95, 136, 204, 284, 407, 560, 779, 1050, 1432, 1901, 2543, 3338, 4393, 5698, 7411, 9513, 12226, 15562, 19803, 24993, 31538, 39506, 49456, 61546, 76499, 94603, 116858, 143679, 176431, 215802, 263576, 320796, 389900
Offset: 0
Keywords
Examples
The partitions of n=5 are [11111], [1112], [113], [122], [23], [14], [5] and they contain 0 + 1 + 1 + 2 + 2 + 1 + 1 = 8 = A096541(5) parts unequal to 1.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
main := proc(n::integer) local a,ndxp,ndxprt,ListOfPartitions,iverbose; with(combinat): ListOfPartitions:=partition(n); a:=0; for ndxp from 1 to nops(ListOfPartitions) do for ndxprt from 1 to nops(ListOfPartitions[ndxp]) do if op(ndxprt,ListOfPartitions[ndxp]) <> 1 then a := a + 1; fi; end do; end do; print("n, a(n):",n,a); end proc; # second Maple program: b:= proc(n, i) option remember; local f, g; if n=0 or i=1 then [1, 0] else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); [f[1]+g[1], f[2]+g[2]+g[1]] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=0..60); # Alois P. Heinz, Apr 04 2012
-
Mathematica
f[n_] := Block[{l = Sort[ Flatten[ IntegerPartitions[n]]]}, Length[l] - Count[l, 1]]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Jun 30 2004 *) a[n_] := Sum[(DivisorSigma[0, k] - 1)*PartitionsP[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jan 14 2013, after Vladeta Jovovic *)
-
PARI
a(n)=sum(k=1,n,(numdiv(k)-1)*numbpart(n-k)) \\ Charles R Greathouse IV, Jan 14 2013
Formula
a(n) = Sum_{k=1..n} (tau(k)-1)*numbpart(n-k). - Vladeta Jovovic, Jun 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma - 2 + log(6*n/Pi^2))/(4*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 24 2016
a(n) = Sum_{i=1..floor(n/2)} A066633(n-i,i). - George Beck, Feb 15 2020
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
Extensions
More terms from Robert G. Wilson v, Jun 30 2004
Comments