cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096541 Number of parts unequal to 1 in all partitions of the integer n. Also the difference between the labeled and the unlabeled case of one-element transitions from the partitions of n to the partitions of n+1.

Original entry on oeis.org

0, 0, 1, 2, 5, 8, 16, 24, 41, 61, 95, 136, 204, 284, 407, 560, 779, 1050, 1432, 1901, 2543, 3338, 4393, 5698, 7411, 9513, 12226, 15562, 19803, 24993, 31538, 39506, 49456, 61546, 76499, 94603, 116858, 143679, 176431, 215802, 263576, 320796, 389900
Offset: 0

Views

Author

Thomas Wieder, Jun 24 2004

Keywords

Comments

Also column 2 of A181187. - Omar E. Pol, Feb 18 2012
Sum over all partitions of n of the difference between the number of parts and the number of distinct parts. - Alois P. Heinz, Nov 18 2020

Examples

			The partitions of n=5 are [11111], [1112], [113], [122], [23], [14], [5] and they contain 0 + 1 + 1 + 2 + 2 + 1 + 1 = 8 = A096541(5) parts unequal to 1.
		

Crossrefs

Programs

  • Maple
    main := proc(n::integer) local a,ndxp,ndxprt,ListOfPartitions,iverbose; with(combinat): ListOfPartitions:=partition(n); a:=0; for ndxp from 1 to nops(ListOfPartitions) do for ndxprt from 1 to nops(ListOfPartitions[ndxp]) do if op(ndxprt,ListOfPartitions[ndxp]) <> 1 then a := a + 1; fi; end do; end do; print("n, a(n):",n,a); end proc;
    # second Maple program:
    b:= proc(n, i) option remember; local f, g;
          if n=0 or i=1 then [1, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));
             [f[1]+g[1], f[2]+g[2]+g[1]]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60); # Alois P. Heinz, Apr 04 2012
  • Mathematica
    f[n_] := Block[{l = Sort[ Flatten[ IntegerPartitions[n]]]}, Length[l] - Count[l, 1]]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Jun 30 2004 *)
    a[n_] := Sum[(DivisorSigma[0, k] - 1)*PartitionsP[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jan 14 2013, after Vladeta Jovovic *)
  • PARI
    a(n)=sum(k=1,n,(numdiv(k)-1)*numbpart(n-k)) \\ Charles R Greathouse IV, Jan 14 2013

Formula

a(n) = A093694(n) - A000070(n).
a(n) = Sum_{k=1..n} (tau(k)-1)*numbpart(n-k). - Vladeta Jovovic, Jun 26 2004
a(n) ~ exp(Pi*sqrt(2*n/3))*(2*gamma - 2 + log(6*n/Pi^2))/(4*Pi*sqrt(2*n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 24 2016
a(n) = Sum_{i=1..floor(n/2)} A066633(n-i,i). - George Beck, Feb 15 2020
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021

Extensions

More terms from Robert G. Wilson v, Jun 30 2004