cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096546 Values w associated with A096545(n), sorted on z, then on y and finally on x.

Original entry on oeis.org

6, 9, 20, 19, 28, 25, 29, 41, 46, 46, 41, 44, 53, 58, 54, 67, 70, 69, 85, 72, 75, 90, 82, 71, 76, 81, 84, 87, 87, 87, 97, 88, 93, 88, 89, 90, 108, 96, 105, 110, 113, 116, 134, 139, 122, 103, 121, 108, 126, 111, 115, 120, 123, 127, 141, 132, 129, 160, 137, 159, 145, 171
Offset: 1

Views

Author

Lekraj Beedassy, Jun 25 2004

Keywords

Comments

For 0

Examples

			Entry 87, for example, is associated with primitive quadruples (x, y, z, w)= (26, 55, 78, 87), (38, 48, 79, 87), (20, 54, 79, 87) satisfying x^3 + y^3 + z^3 = w^3, for 0<x<y<z=A096545(n), with n=28, 29, 30.
		

Crossrefs

Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

Programs

  • Mathematica
    s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
    xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
    SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 4]] (* Jean-François Alcover, Mar 06 2020 *)

Formula

From Thomas Scheuerle, Jan 29 2025: (Start)
Ajai Choudhry gave this beautiful solution for this problem:
v1,v2,v3 are integers > 0, v2 > v1, v3 > floor((v1^3+v2^3)^(1/3)).
x*d = v3*( -v2^3 - v1^3 + v3^3).
y*d = -v2^4 + 2*v2^3*v1 - 3*v2^2*v1^2 + 2*v2*v1^3 - v1^4 + (v1+v2)*v3^3.
z*d = v2^4 - 2*v2^3*v1 + 3*v2^2*v1^2 - 2*v2*v1^3 + v1^4 + (2*v2-v1)*v3^3.
w*d = v3*( v2^3 + (v2-v1)^3 + v3^3).
d = gcd(x*r, y*r, z*r, w*r). (End)

Extensions

Extended by Ray Chandler, Jun 28 2004