cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A096545 Ordered z such that, for 0

Original entry on oeis.org

5, 8, 17, 18, 21, 22, 27, 33, 37, 37, 40, 41, 44, 49, 53, 54, 57, 61, 64, 65, 66, 69, 69, 70, 72, 74, 75, 78, 79, 79, 79, 84, 85, 86, 86, 87, 89, 90, 92, 96, 97, 97, 97, 99, 101, 102, 102, 104, 105, 108, 114, 116, 118, 121, 122, 123, 124, 124, 128, 131, 136, 136, 137
Offset: 1

Views

Author

Lekraj Beedassy, Jun 25 2004

Keywords

Comments

For corresponding values w see A096546.

Examples

			21 and 22, for instance, are terms because we have: 18^3 + 19^3 + 21^3 = 28^3 and 4^3 + 17^3 + 22^3 = 25^3.
		

References

  • Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.

Crossrefs

Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

Programs

  • Mathematica
    s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
    xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
    Sort[xyzw[[All, 3]]] (* Jean-François Alcover, Mar 06 2020 *)

Extensions

Edited, corrected and extended by Ray Chandler, Jun 28 2004

A095867 Values y associated with A096545(n), sorted on z, then on y and finally on x.

Original entry on oeis.org

4, 6, 14, 10, 19, 17, 15, 32, 30, 36, 17, 23, 34, 42, 19, 51, 54, 38, 61, 39, 43, 59, 60, 23, 33, 48, 53, 55, 48, 54, 69, 43, 54, 31, 40, 38, 82, 53, 70, 75, 74, 86, 95, 96, 92, 31, 84, 51, 94, 47, 34, 55, 51, 65, 85, 76, 57, 123, 73, 121, 81, 108, 64, 71, 73, 135, 75, 107, 87
Offset: 1

Views

Author

Ray Chandler, Jun 28 2004

Keywords

Comments

For 0

Examples

			a(1)=4 corresponding to the quadruple (3,4,5,6).
		

Crossrefs

Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

Programs

  • Mathematica
    s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
    xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
    SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 2]] (* Jean-François Alcover, Mar 06 2020 *)

A095868 Values x associated with A096545(n), sorted on z, then on y and finally on x.

Original entry on oeis.org

3, 1, 7, 3, 18, 4, 11, 6, 27, 3, 2, 16, 29, 15, 12, 22, 7, 36, 50, 34, 38, 58, 19, 14, 31, 25, 28, 26, 38, 20, 45, 21, 32, 25, 17, 25, 15, 19, 33, 29, 50, 23, 86, 94, 19, 12, 49, 13, 23, 16, 3, 9, 44, 13, 72, 5, 38, 69, 44, 3, 12, 107, 31, 1, 71, 1, 22, 96, 65, 48, 69, 48, 46, 59
Offset: 1

Author

Ray Chandler, Jun 28 2004

Keywords

Comments

For 0

Examples

			a(1)=3 corresponding to the quadruple (3,4,5,6).
		

Crossrefs

Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

Programs

  • Mathematica
    s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
    xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
    SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 1]] (* Jean-François Alcover, Mar 06 2020 *)

A337098 Least k whose set of divisors contains exactly n quadruples (x, y, z, w) such that x^3 + y^3 + z^3 = w^3, or 0 if no such k exists.

Original entry on oeis.org

60, 120, 240, 432, 960, 360, 3840, 1728, 2592, 720, 1800, 2520, 161700, 1440, 6840, 9000, 2160, 2880, 168300, 5040, 41472, 5760, 1520820, 4320, 7200, 11520, 119700, 10080, 682080, 10800, 8640, 14400, 27360, 12960, 373248, 20160, 61560, 17280, 28800, 55440, 171000, 21600
Offset: 1

Author

Michel Lagneau, Aug 15 2020

Keywords

Comments

Observation: a(n) == 0 (mod 12).
Listing primitive tuples (w, x, y, z) enables to compute for some m how many such tuples are in its divisors using the lcm of such tuples. - David A. Corneth, Sep 26 2020

Examples

			a(3) = 240 because the set of the divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
		

References

  • Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.

Programs

Extensions

a(13)-a(22) from Chai Wah Wu, Sep 25 2020
More terms from David A. Corneth, Sep 26 2020
Showing 1-4 of 4 results.