A095867 Values y associated with A096545(n), sorted on z, then on y and finally on x.
4, 6, 14, 10, 19, 17, 15, 32, 30, 36, 17, 23, 34, 42, 19, 51, 54, 38, 61, 39, 43, 59, 60, 23, 33, 48, 53, 55, 48, 54, 69, 43, 54, 31, 40, 38, 82, 53, 70, 75, 74, 86, 95, 96, 92, 31, 84, 51, 94, 47, 34, 55, 51, 65, 85, 76, 57, 123, 73, 121, 81, 108, 64, 71, 73, 135, 75, 107, 87
Offset: 1
Keywords
A095868 Values x associated with A096545(n), sorted on z, then on y and finally on x.
3, 1, 7, 3, 18, 4, 11, 6, 27, 3, 2, 16, 29, 15, 12, 22, 7, 36, 50, 34, 38, 58, 19, 14, 31, 25, 28, 26, 38, 20, 45, 21, 32, 25, 17, 25, 15, 19, 33, 29, 50, 23, 86, 94, 19, 12, 49, 13, 23, 16, 3, 9, 44, 13, 72, 5, 38, 69, 44, 3, 12, 107, 31, 1, 71, 1, 22, 96, 65, 48, 69, 48, 46, 59
Offset: 1
Keywords
Comments
For 0
Examples
a(1)=3 corresponding to the quadruple (3,4,5,6).
Links
- David A. Corneth, Table of n, a(n) for n = 1..13798 (terms corresponding to z <= 8000)
- Fred Richman, Sums of Three Cubes
Programs
-
Mathematica
s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers]; xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&; SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 1]] (* Jean-François Alcover, Mar 06 2020 *)
A096546 Values w associated with A096545(n), sorted on z, then on y and finally on x.
6, 9, 20, 19, 28, 25, 29, 41, 46, 46, 41, 44, 53, 58, 54, 67, 70, 69, 85, 72, 75, 90, 82, 71, 76, 81, 84, 87, 87, 87, 97, 88, 93, 88, 89, 90, 108, 96, 105, 110, 113, 116, 134, 139, 122, 103, 121, 108, 126, 111, 115, 120, 123, 127, 141, 132, 129, 160, 137, 159, 145, 171
Offset: 1
Keywords
Comments
For 0
Examples
Entry 87, for example, is associated with primitive quadruples (x, y, z, w)= (26, 55, 78, 87), (38, 48, 79, 87), (20, 54, 79, 87) satisfying x^3 + y^3 + z^3 = w^3, for 0<x<y<z=A096545(n), with n=28, 29, 30.
Links
- David A. Corneth, Table of n, a(n) for n = 1..13798 (terms corresponding to z <= 8000)
- Ajai Choudhry, On equal sums of cubes, Rocky Mountains Journal of Mathematics, 28 (4), 1998.
- Fred Richman, Sums of Three Cubes
Programs
-
Mathematica
s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers]; xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&; SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 4]] (* Jean-François Alcover, Mar 06 2020 *)
Formula
From Thomas Scheuerle, Jan 29 2025: (Start)
Ajai Choudhry gave this beautiful solution for this problem:
v1,v2,v3 are integers > 0, v2 > v1, v3 > floor((v1^3+v2^3)^(1/3)).
x*d = v3*( -v2^3 - v1^3 + v3^3).
y*d = -v2^4 + 2*v2^3*v1 - 3*v2^2*v1^2 + 2*v2*v1^3 - v1^4 + (v1+v2)*v3^3.
z*d = v2^4 - 2*v2^3*v1 + 3*v2^2*v1^2 - 2*v2*v1^3 + v1^4 + (2*v2-v1)*v3^3.
w*d = v3*( v2^3 + (v2-v1)^3 + v3^3).
d = gcd(x*r, y*r, z*r, w*r). (End)
Extensions
Extended by Ray Chandler, Jun 28 2004
A328149 Numbers whose set of divisors contains a quadruple (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3.
60, 72, 120, 144, 180, 216, 240, 288, 300, 360, 420, 432, 480, 504, 540, 576, 600, 648, 660, 720, 780, 792, 840, 864, 900, 936, 960, 1008, 1020, 1080, 1140, 1152, 1200, 1224, 1260, 1296, 1320, 1368, 1380, 1440, 1500, 1512, 1560, 1584, 1620, 1656, 1680, 1710
Offset: 1
Keywords
Comments
The subsequence of numbers of the form 2^i*3^j is 72, 144, 216, 288, 432, 576, 648, 864, 1152, 1296, ...
The corresponding number of quadruples of the sequence is 1, 1, 2, 2, 2, 2, 3, 3, 2, 6, 2, 4, 4, 2, 3, 4, 4, 3, 2, 10, ... (see the sequence A328204).
The set of divisors of a(n) contains at least one primitive quadruple.
Examples:
The set of divisors of a(1) = 60 contains only one primitive quadruple: (3, 4, 5, 6).
The set of divisors of a(10) = 360 contains two primitive quadruples: (1, 6, 8, 9) and (3, 4, 5, 6).
From Robert Israel, Jul 06 2020: (Start)
Every multiple of a member of the sequence is in the sequence.
The first member of the sequence not divisible by 6 is a(68) = 2380, which has the quadruple (7, 14, 17, 20).
The first odd member of the sequence is a(1230) = 43065, which has the quadruple (11, 15, 27, 29). (End)
Examples
120 is in the sequence because the set of divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120} contains the quadruples {3, 4, 5, 6} and {6, 8, 10, 12}. The first quadruple is primitive.
References
- Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Fred Richman, Sums of Three Cubes
Programs
-
Maple
with(numtheory): for n from 3 to 2000 do : d:=divisors(n):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 then it:=it+1: else fi: od: od: od: od: if it>0 then printf(`%d, `,n): else fi: od:
-
Mathematica
nq[n_] := If[ Mod[n, 6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^3 + d[[j]]^3; Do[u = t + d[[h]]^3; If[u > n^3, Break[]]; If[ Mod[n^3, u] == 0 && IntegerQ[v = u^(1/3)] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* program from Giovanni Resta adapted for the sequence. See A330893 *)
-
PARI
isok(n) = {my(d=divisors(n), m); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), return (1));););););} \\ Michel Marcus, Nov 15 2020
A328204 Numbers of quadruples contained in the divisors of A328149(n).
1, 1, 2, 2, 2, 2, 3, 3, 2, 6, 2, 4, 4, 2, 3, 4, 4, 3, 2, 10, 2, 2, 4, 6, 4, 2, 5, 4, 2, 10, 2, 5, 6, 2, 4, 6, 4, 2, 2, 14, 3, 4, 4, 4, 4, 2, 6, 1, 8, 2, 11, 2, 4, 6, 4, 4, 6, 4, 2, 4, 17, 2, 2, 4, 6, 4, 4, 1, 8, 4, 2, 12, 2, 9, 6, 2, 6, 4, 4, 4, 2, 18, 3, 2, 6
Offset: 1
Keywords
Comments
A quadruple (x, y, z, w) of A328149 is a set of positive integers that satisfy x^3 + y^3 + z^3 = w^3.
Examples
a(7) = 3 because the set of divisors of A328149(7) = 240: {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains the three quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
Links
- Michel Marcus, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): for n from 3 to 3000 do : d:=divisors(n):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 then it:=it+1: else fi: od: od: od: od: if it>0 then printf(`%d, `,it): else fi: od:
-
Mathematica
nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[t = d[[i]]^3 + d[[j]]^3; Do[u = t + d[[h]]^2; If[u > n^3, Break[]]; If[Mod[n^3, u] == 0 && IntegerQ[v = u^(1/3)] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[Array[nq, 1638], # > 0 &] (* program from Giovanni Resta adapted for the sequence. See A330894 *)
-
PARI
isok(n) = {my(d=divisors(n), nb=0, m); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), nb++););););); nb;} lista(nn) = my(m); for (n=1, nn, if (m=isok(n), print1(m, ", "))); \\ Michel Marcus, Nov 15 2020
A385325 Numbers x such that there exist two integers y, z both >0 such that sigma(x)^3 = x^3 + y^3 + z^3.
5, 6, 53, 58, 102, 118, 152, 168, 197, 214, 250, 258, 408, 426, 445, 476, 487, 491, 508, 672, 760, 783, 861, 885, 1182, 1204, 1242, 1299, 1305, 1350, 1615, 1890, 1988, 1992, 2040, 2082, 2190, 2465, 2519, 2679, 3105, 3144, 3213, 3276, 3292, 3432, 3994, 4035, 4210, 4256
Offset: 1
Keywords
Comments
The numbers x, y and z form a sigma-cubic triple. See Dimitrov link.
If sigma(x)^3 = x^3 + y^3 + z^3 then sigma(x)^3 - x^3 = y^3 + z^3 = (y + z)*(y^2 - y*z + z^2) which enables comparing pairwise divisors of sigma(x)^3 - x^3 to see if sigma(x)^3 - x^3 is the sum of two cubes. - David A. Corneth, Jun 26 2025
Examples
(3, 4, 5) is such a triple because sigma(5)^3 = 6^3 = 5^3 + 4^3 + 3^3. 6 is in the sequence as sigma(6)^3 = 6^3 + 8^3 + 10^3. - _David A. Corneth_, Jun 26 2025
Links
- David A. Corneth, PARI program
- S. I. Dimitrov, Generalizations of amicable numbers, arXiv:2408.07387 [math.NT], 2024.
Programs
-
PARI
\\ See Corneth link
Extensions
Data corrected by David A. Corneth, Jun 26 2025
A337098 Least k whose set of divisors contains exactly n quadruples (x, y, z, w) such that x^3 + y^3 + z^3 = w^3, or 0 if no such k exists.
60, 120, 240, 432, 960, 360, 3840, 1728, 2592, 720, 1800, 2520, 161700, 1440, 6840, 9000, 2160, 2880, 168300, 5040, 41472, 5760, 1520820, 4320, 7200, 11520, 119700, 10080, 682080, 10800, 8640, 14400, 27360, 12960, 373248, 20160, 61560, 17280, 28800, 55440, 171000, 21600
Offset: 1
Comments
Observation: a(n) == 0 (mod 12).
Listing primitive tuples (w, x, y, z) enables to compute for some m how many such tuples are in its divisors using the lcm of such tuples. - David A. Corneth, Sep 26 2020
Examples
a(3) = 240 because the set of the divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
References
- Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.
Links
- David A. Corneth, Table of n, a(n) for n = 1..504
- Fred Richman, Sums of Three Cubes
Programs
-
Maple
with(numtheory):divisors(240); for n from 1 to 52 do : ii:=0: for q from 6 by 6 to 10^8 while(ii=0) do: d:=divisors(q):n0:=nops(d):it:=0: for i from 1 to n0-3 do: for j from i+1 to n0-2 do : for k from j+1 to n0-1 do: for m from k+1 to n0 do: if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3 then it:=it+1: else fi: od: od: od: od: if it = n then ii:=1: printf (`%d %d \n`,n,q): else fi: od: od:
-
Mathematica
With[{s = Array[Count[Subsets[Divisors[#], {4}]^3, ?(#1 + #2 + #3 == #4 & @@ # &)] &, 10^4]}, Rest@ Values[#][[1 ;; 1 + LengthWhile[Differences@ Keys@ #, # == 1 &] ]] &@ KeySort@ PositionIndex[s][[All, 1]]] (* _Michael De Vlieger, Sep 18 2020 *)
-
Python
from itertools import combinations from sympy import divisors def A337098(n): k = 1 while True: if n == sum(1 for x in combinations((d**3 for d in divisors(k)),4) if sum(x[:-1]) == x[-1]): return k k += 1 # Chai Wah Wu, Sep 25 2020
Extensions
a(13)-a(22) from Chai Wah Wu, Sep 25 2020
More terms from David A. Corneth, Sep 26 2020
Comments
Examples
Links
Crossrefs
Programs
Mathematica