cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A095867 Values y associated with A096545(n), sorted on z, then on y and finally on x.

Original entry on oeis.org

4, 6, 14, 10, 19, 17, 15, 32, 30, 36, 17, 23, 34, 42, 19, 51, 54, 38, 61, 39, 43, 59, 60, 23, 33, 48, 53, 55, 48, 54, 69, 43, 54, 31, 40, 38, 82, 53, 70, 75, 74, 86, 95, 96, 92, 31, 84, 51, 94, 47, 34, 55, 51, 65, 85, 76, 57, 123, 73, 121, 81, 108, 64, 71, 73, 135, 75, 107, 87
Offset: 1

Views

Author

Ray Chandler, Jun 28 2004

Keywords

Comments

For 0

Examples

			a(1)=4 corresponding to the quadruple (3,4,5,6).
		

Crossrefs

Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

Programs

  • Mathematica
    s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
    xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
    SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 2]] (* Jean-François Alcover, Mar 06 2020 *)

A095868 Values x associated with A096545(n), sorted on z, then on y and finally on x.

Original entry on oeis.org

3, 1, 7, 3, 18, 4, 11, 6, 27, 3, 2, 16, 29, 15, 12, 22, 7, 36, 50, 34, 38, 58, 19, 14, 31, 25, 28, 26, 38, 20, 45, 21, 32, 25, 17, 25, 15, 19, 33, 29, 50, 23, 86, 94, 19, 12, 49, 13, 23, 16, 3, 9, 44, 13, 72, 5, 38, 69, 44, 3, 12, 107, 31, 1, 71, 1, 22, 96, 65, 48, 69, 48, 46, 59
Offset: 1

Author

Ray Chandler, Jun 28 2004

Keywords

Comments

For 0

Examples

			a(1)=3 corresponding to the quadruple (3,4,5,6).
		

Crossrefs

Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

Programs

  • Mathematica
    s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
    xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
    SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 1]] (* Jean-François Alcover, Mar 06 2020 *)

A096546 Values w associated with A096545(n), sorted on z, then on y and finally on x.

Original entry on oeis.org

6, 9, 20, 19, 28, 25, 29, 41, 46, 46, 41, 44, 53, 58, 54, 67, 70, 69, 85, 72, 75, 90, 82, 71, 76, 81, 84, 87, 87, 87, 97, 88, 93, 88, 89, 90, 108, 96, 105, 110, 113, 116, 134, 139, 122, 103, 121, 108, 126, 111, 115, 120, 123, 127, 141, 132, 129, 160, 137, 159, 145, 171
Offset: 1

Author

Lekraj Beedassy, Jun 25 2004

Keywords

Comments

For 0

Examples

			Entry 87, for example, is associated with primitive quadruples (x, y, z, w)= (26, 55, 78, 87), (38, 48, 79, 87), (20, 54, 79, 87) satisfying x^3 + y^3 + z^3 = w^3, for 0<x<y<z=A096545(n), with n=28, 29, 30.
		

Crossrefs

Primitive quadruples (x, y, z, w) = (A095868, A095867, A096545, A096546).

Programs

  • Mathematica
    s[w_] := Solve[0 < x < y < z && x^3 + y^3 + z^3 == w^3 && GCD[x, y, z, w] == 1, {x, y, z}, Integers];
    xyzw = Reap[For[w = 1, w <= 200, w++, sw = s[w]; If[sw != {}, Print[{x, y, z, w} /. sw; Sow[{x, y, z, w} /. sw ]]]]][[2, 1]] // Flatten[#, 1]&;
    SortBy[xyzw, {#[[3]]&, #[[2]]&, #[[1]]&}][[All, 4]] (* Jean-François Alcover, Mar 06 2020 *)

Formula

From Thomas Scheuerle, Jan 29 2025: (Start)
Ajai Choudhry gave this beautiful solution for this problem:
v1,v2,v3 are integers > 0, v2 > v1, v3 > floor((v1^3+v2^3)^(1/3)).
x*d = v3*( -v2^3 - v1^3 + v3^3).
y*d = -v2^4 + 2*v2^3*v1 - 3*v2^2*v1^2 + 2*v2*v1^3 - v1^4 + (v1+v2)*v3^3.
z*d = v2^4 - 2*v2^3*v1 + 3*v2^2*v1^2 - 2*v2*v1^3 + v1^4 + (2*v2-v1)*v3^3.
w*d = v3*( v2^3 + (v2-v1)^3 + v3^3).
d = gcd(x*r, y*r, z*r, w*r). (End)

Extensions

Extended by Ray Chandler, Jun 28 2004

A328149 Numbers whose set of divisors contains a quadruple (x, y, z, w) satisfying x^3 + y^3 + z^3 = w^3.

Original entry on oeis.org

60, 72, 120, 144, 180, 216, 240, 288, 300, 360, 420, 432, 480, 504, 540, 576, 600, 648, 660, 720, 780, 792, 840, 864, 900, 936, 960, 1008, 1020, 1080, 1140, 1152, 1200, 1224, 1260, 1296, 1320, 1368, 1380, 1440, 1500, 1512, 1560, 1584, 1620, 1656, 1680, 1710
Offset: 1

Author

Michel Lagneau, Jun 07 2020

Keywords

Comments

The subsequence of numbers of the form 2^i*3^j is 72, 144, 216, 288, 432, 576, 648, 864, 1152, 1296, ...
The corresponding number of quadruples of the sequence is 1, 1, 2, 2, 2, 2, 3, 3, 2, 6, 2, 4, 4, 2, 3, 4, 4, 3, 2, 10, ... (see the sequence A328204).
The set of divisors of a(n) contains at least one primitive quadruple.
Examples:
The set of divisors of a(1) = 60 contains only one primitive quadruple: (3, 4, 5, 6).
The set of divisors of a(10) = 360 contains two primitive quadruples: (1, 6, 8, 9) and (3, 4, 5, 6).
From Robert Israel, Jul 06 2020: (Start)
Every multiple of a member of the sequence is in the sequence.
The first member of the sequence not divisible by 6 is a(68) = 2380, which has the quadruple (7, 14, 17, 20).
The first odd member of the sequence is a(1230) = 43065, which has the quadruple (11, 15, 27, 29). (End)

Examples

			120 is in the sequence because the set of divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120} contains the quadruples {3, 4, 5, 6} and {6, 8, 10, 12}. The first quadruple is primitive.
		

References

  • Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 3 to 2000 do :
       d:=divisors(n):n0:=nops(d):it:=0:
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do :
          for k from j+1 to n0-1 do:
          for m from k+1 to n0 do:
           if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        od:
        if it>0 then
        printf(`%d, `,n):
        else fi:
       od:
  • Mathematica
    nq[n_] := If[ Mod[n, 6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^3 + d[[j]]^3; Do[u = t + d[[h]]^3; If[u > n^3, Break[]]; If[ Mod[n^3, u] == 0 && IntegerQ[v = u^(1/3)] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* program from Giovanni Resta adapted for the sequence. See A330893 *)
  • PARI
    isok(n) = {my(d=divisors(n), m); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), return (1));););););} \\ Michel Marcus, Nov 15 2020

A328204 Numbers of quadruples contained in the divisors of A328149(n).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 3, 2, 6, 2, 4, 4, 2, 3, 4, 4, 3, 2, 10, 2, 2, 4, 6, 4, 2, 5, 4, 2, 10, 2, 5, 6, 2, 4, 6, 4, 2, 2, 14, 3, 4, 4, 4, 4, 2, 6, 1, 8, 2, 11, 2, 4, 6, 4, 4, 6, 4, 2, 4, 17, 2, 2, 4, 6, 4, 4, 1, 8, 4, 2, 12, 2, 9, 6, 2, 6, 4, 4, 4, 2, 18, 3, 2, 6
Offset: 1

Author

Michel Lagneau, Jun 07 2020

Keywords

Comments

A quadruple (x, y, z, w) of A328149 is a set of positive integers that satisfy x^3 + y^3 + z^3 = w^3.

Examples

			a(7) = 3 because the set of divisors of A328149(7) = 240: {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains the three quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 3 to 3000 do :
       d:=divisors(n):n0:=nops(d):it:=0:
        for i from 1 to n0-3 do:
         for j from i+1 to n0-2 do :
          for k from j+1 to n0-1 do:
          for m from k+1 to n0 do:
           if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3
            then
            it:=it+1:
            else
           fi:
          od:
         od:
        od:
        od:
        if it>0 then
        printf(`%d, `,it):
        else fi:
       od:
  • Mathematica
    nq[n_] := If[Mod[n, 6] > 0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[t = d[[i]]^3 + d[[j]]^3; Do[u = t + d[[h]]^2; If[u > n^3, Break[]]; If[Mod[n^3, u] == 0 && IntegerQ[v = u^(1/3)] && Mod[n, v] == 0, c++], {h, j+1, m-1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[Array[nq, 1638], # > 0 &] (* program from Giovanni Resta adapted for the sequence. See A330894 *)
  • PARI
    isok(n) = {my(d=divisors(n), nb=0, m); if (#d > 3, for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (ispower(d[i]^3+d[j]^3+d[k]^3, 3, &m) && !(n%m), nb++););););); nb;}
    lista(nn) = my(m); for (n=1, nn, if (m=isok(n), print1(m, ", "))); \\ Michel Marcus, Nov 15 2020

A385325 Numbers x such that there exist two integers y, z both >0 such that sigma(x)^3 = x^3 + y^3 + z^3.

Original entry on oeis.org

5, 6, 53, 58, 102, 118, 152, 168, 197, 214, 250, 258, 408, 426, 445, 476, 487, 491, 508, 672, 760, 783, 861, 885, 1182, 1204, 1242, 1299, 1305, 1350, 1615, 1890, 1988, 1992, 2040, 2082, 2190, 2465, 2519, 2679, 3105, 3144, 3213, 3276, 3292, 3432, 3994, 4035, 4210, 4256
Offset: 1

Author

S. I. Dimitrov, Jun 25 2025

Keywords

Comments

The numbers x, y and z form a sigma-cubic triple. See Dimitrov link.
If sigma(x)^3 = x^3 + y^3 + z^3 then sigma(x)^3 - x^3 = y^3 + z^3 = (y + z)*(y^2 - y*z + z^2) which enables comparing pairwise divisors of sigma(x)^3 - x^3 to see if sigma(x)^3 - x^3 is the sum of two cubes. - David A. Corneth, Jun 26 2025

Examples

			(3, 4, 5) is such a triple because sigma(5)^3 = 6^3 = 5^3 + 4^3 + 3^3.
6 is in the sequence as sigma(6)^3 = 6^3 + 8^3 + 10^3. - _David A. Corneth_, Jun 26 2025
		

Crossrefs

Programs

  • PARI
    \\ See Corneth link

Extensions

Data corrected by David A. Corneth, Jun 26 2025

A337098 Least k whose set of divisors contains exactly n quadruples (x, y, z, w) such that x^3 + y^3 + z^3 = w^3, or 0 if no such k exists.

Original entry on oeis.org

60, 120, 240, 432, 960, 360, 3840, 1728, 2592, 720, 1800, 2520, 161700, 1440, 6840, 9000, 2160, 2880, 168300, 5040, 41472, 5760, 1520820, 4320, 7200, 11520, 119700, 10080, 682080, 10800, 8640, 14400, 27360, 12960, 373248, 20160, 61560, 17280, 28800, 55440, 171000, 21600
Offset: 1

Author

Michel Lagneau, Aug 15 2020

Keywords

Comments

Observation: a(n) == 0 (mod 12).
Listing primitive tuples (w, x, y, z) enables to compute for some m how many such tuples are in its divisors using the lcm of such tuples. - David A. Corneth, Sep 26 2020

Examples

			a(3) = 240 because the set of the divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
		

References

  • Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.

Programs

Extensions

a(13)-a(22) from Chai Wah Wu, Sep 25 2020
More terms from David A. Corneth, Sep 26 2020
Showing 1-7 of 7 results.