3, 1, 7, 3, 18, 4, 11, 6, 27, 3, 2, 16, 29, 15, 12, 22, 7, 36, 50, 34, 38, 58, 19, 14, 31, 25, 28, 26, 38, 20, 45, 21, 32, 25, 17, 25, 15, 19, 33, 29, 50, 23, 86, 94, 19, 12, 49, 13, 23, 16, 3, 9, 44, 13, 72, 5, 38, 69, 44, 3, 12, 107, 31, 1, 71, 1, 22, 96, 65, 48, 69, 48, 46, 59
Offset: 1
A096546
Values w associated with A096545(n), sorted on z, then on y and finally on x.
Original entry on oeis.org
6, 9, 20, 19, 28, 25, 29, 41, 46, 46, 41, 44, 53, 58, 54, 67, 70, 69, 85, 72, 75, 90, 82, 71, 76, 81, 84, 87, 87, 87, 97, 88, 93, 88, 89, 90, 108, 96, 105, 110, 113, 116, 134, 139, 122, 103, 121, 108, 126, 111, 115, 120, 123, 127, 141, 132, 129, 160, 137, 159, 145, 171
Offset: 1
A337098
Least k whose set of divisors contains exactly n quadruples (x, y, z, w) such that x^3 + y^3 + z^3 = w^3, or 0 if no such k exists.
Original entry on oeis.org
60, 120, 240, 432, 960, 360, 3840, 1728, 2592, 720, 1800, 2520, 161700, 1440, 6840, 9000, 2160, 2880, 168300, 5040, 41472, 5760, 1520820, 4320, 7200, 11520, 119700, 10080, 682080, 10800, 8640, 14400, 27360, 12960, 373248, 20160, 61560, 17280, 28800, 55440, 171000, 21600
Offset: 1
a(3) = 240 because the set of the divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
- Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.
-
with(numtheory):divisors(240);
for n from 1 to 52 do :
ii:=0:
for q from 6 by 6 to 10^8 while(ii=0) do:
d:=divisors(q):n0:=nops(d):it:=0:
for i from 1 to n0-3 do:
for j from i+1 to n0-2 do :
for k from j+1 to n0-1 do:
for m from k+1 to n0 do:
if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3
then
it:=it+1:
else
fi:
od:
od:
od:
od:
if it = n
then
ii:=1: printf (`%d %d \n`,n,q):
else
fi:
od:
od:
-
With[{s = Array[Count[Subsets[Divisors[#], {4}]^3, ?(#1 + #2 + #3 == #4 & @@ # &)] &, 10^4]}, Rest@ Values[#][[1 ;; 1 + LengthWhile[Differences@ Keys@ #, # == 1 &] ]] &@ KeySort@ PositionIndex[s][[All, 1]]] (* _Michael De Vlieger, Sep 18 2020 *)
-
from itertools import combinations
from sympy import divisors
def A337098(n):
k = 1
while True:
if n == sum(1 for x in combinations((d**3 for d in divisors(k)),4) if sum(x[:-1]) == x[-1]):
return k
k += 1 # Chai Wah Wu, Sep 25 2020
Showing 1-4 of 4 results.
Comments