A096651 Lower triangular matrix T, read by rows, such that the row sums of T^n form the n-dimensional partitions.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 3, 1, 4, 1, 1, 0, 1, -1, 7, 1, 5, 1, 1, 0, 1, 15, -17, 14, 1, 6, 1, 1, 0, 1, -78, 133, -61, 25, 1, 7, 1, 1, 0, 1, 632, -1020, 529, -152, 41, 1, 8, 1, 1, 0, 1, -6049, 9826, -4989, 1506, -314, 63, 1, 9, 1, 1, 0, 1, 68036, -110514, 56161, -16668, 3532, -576, 92, 1, 10, 1, 1, 0, 1, -878337, 1427046, -724881, 214528, -44703, 7276, -972, 129, 1, 11, 1, 1, 0, 1, 12817659, -20827070, 10576885, -3123249, 647092, -103476, 13644, -1541, 175, 1, 12, 1, 1
Offset: 0
Examples
Triangle T begins: {1}, {0,1}, {0,1,1}, {0,1,1,1}, {0,1,2,1,1}, {0,1,1,3,1,1}, {0,1,3,1,4,1,1}, {0,1,-1,7,1,5,1,1}, {0,1,15,-17,14,1,6,1,1}, {0,1,-78,133,-61,25,1,7,1,1}, {0,1,632,-1020,529,-152,41,1,8,1,1}, {0,1,-6049,9826,-4989,1506,-314,63,1,9,1,1}, {0,1,68036,-110514,56161,-16668,3532,-576,92,1,10,1,1}, {0,1,-878337,1427046,-724881,214528,-44703,7276,-972,129,1,11,1,1}, ... with row sums: {1,1,2,3,5,7,11,15,22,...} (A000041). T^2 begins: {1}, {0,1}, {0,2,1}, {0,3,2,1}, {0,5,5,2,1}, {0,7,7,7,2,1}, {0,11,16,9,9,2,1}, {0,15,15,31,11,11,2,1}, {0,22,59,-4,54,13,13,2,1}, ... with row sums: {1,1,3,6,13,24,48,86,...} (A000219).
Links
- S. Govindarajan Notes on higher-dimensional partitions, arXiv:1203.4419 [math.CO], 2012.
- Wouter Meeussen, Rows 14-17 added
Crossrefs
Formula
For n>=0: T(0, 0)=1, T(n+1,0)=0, T(n+1,1)=1. For n>=1: T(n, n)=1, T(n+1, n)=1, T(n+2, n)=n, T(n+3, n)=1, T(n+4, n)=n*(5+n^2)/6, T(n+5, n)=(-48+90*n-7*n^2-6*n^3-5*n^4)/24, T(n+6, n)=(400-382*n-55*n^2+30*n^3+35*n^4+12*n^5)/40 (Wouter Meeussen). Corrected entry for the zeroth and first columns of the matrix T -- entry had columns and rows interchanged (Corrected by Suresh Govindarajan)
G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], where P_n(y) is the n-th row polynomial of triangle A096800.
Extensions
Rows 14-17 calculated (using extra terms in A096642-A096645 provided by Sean A. Irvine) by Wouter Meeussen, Jan 08 2011
Comments