A096787 Primes of form 4n+3 that are the sum of two consecutive composite numbers.
19, 31, 43, 67, 71, 79, 103, 127, 131, 139, 151, 163, 191, 199, 211, 223, 239, 251, 271, 283, 307, 311, 331, 367, 379, 419, 431, 439, 443, 463, 487, 491, 499, 523, 547, 571, 599, 607, 619, 631, 643, 647, 659, 683, 691, 727, 739, 743, 751, 787, 811, 823, 827
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
2Select[ Range[ 450], PrimeQ[ # ] == PrimeQ[ # + 1] == False && PrimeQ[2# + 1, GaussianIntegers -> True] == True &] + 1 (* Robert G. Wilson v, Jul 11 2004 *) Select[Total/@Partition[Select[Range[500],CompositeQ],2,1],PrimeQ[#] && IntegerQ[ (#-3)/4]&] (* Harvey P. Dale, Mar 06 2019 *)
-
PARI
nextcomposite(k)=if(k<3,4,if(isprime(k),k+1,k)); {m=440;n=4;while(n
Klaus Brockhaus, Jul 10 2004
Formula
Equals 1+2*A096788.
Extensions
Corrected and extended by Klaus Brockhaus and Ray Chandler, Jul 10 2004