cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A155988 a(n) = (2*n + 1)*9^n.

Original entry on oeis.org

1, 27, 405, 5103, 59049, 649539, 6908733, 71744535, 731794257, 7360989291, 73222472421, 721764371007, 7060738412025, 68630377364883, 663426981193869, 6382625094934119, 61149666232110753, 583701359488329915, 5553501505988967477, 52683216989246691471, 498464283821334080841
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 01 2009

Keywords

Crossrefs

Cf. A058962 for the similar (2n+1)4^n.

Programs

  • Magma
    [(2*n+1)*9^n: n in [0..20]]; // Vincenzo Librandi, Jun 08 2011
    
  • Maxima
    makelist((2*n+1)*9^n, n, 0, 20); /* Martin Ettl, Nov 11 2012 */
  • PARI
    a(n)=(2*n+1)*9^n;
    

Formula

G.f.: (1 + 9*x)/(1 - 9*x)^2.
a(n) = 18*a(n-1) - 81*a(n-2) for n>=2.
Sum_{n>=0} 1/a(n) = (3/2)*log(2).
a(n) = A005408(n) * A001019(n).
a(n) = (2*n - 1)*3^(2*n-1)/3 = A060851(n)/3.
Sum_{n>=0} (-1)^n/a(n) = 3*arctan(1/3). - Amiram Eldar, Feb 26 2022
E.g.f.: exp(9*x)*(1 + 18*x). - Stefano Spezia, May 07 2023

A096950 Denominators of partial sums of series for 3*arctanh(1/3) = (3/2)*log(2).

Original entry on oeis.org

1, 27, 405, 25515, 2066715, 7577955, 2659862205, 71816279535, 3662630256285, 626309773824735, 2415766270466835, 166687872662211615, 7500954269799522675, 1822731887561284010025, 52859224739277236290725
Offset: 0

Views

Author

Wolfdieter Lang, Jul 16 2004

Keywords

Comments

Numerators are given in A096949.

Examples

			n=10: A096949(10)/2415766270466835 = 2511722368895123/2415766270466835 = 1.039720770838... approximates 3*arctanh(1/3)= 1.039720770840...
		

Formula

a(n)=denominator(A(n)) with the rational number A(n):= sum(((1/3)^(2*k))/(2*k+1), k=0..n) in lowest terms.
Showing 1-2 of 2 results.