cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A171220 a(n) = (2n + 1)*5^n.

Original entry on oeis.org

1, 15, 125, 875, 5625, 34375, 203125, 1171875, 6640625, 37109375, 205078125, 1123046875, 6103515625, 32958984375, 177001953125, 946044921875, 5035400390625, 26702880859375, 141143798828125, 743865966796875, 3910064697265625, 20503997802734375, 107288360595703125
Offset: 0

Views

Author

Jaume Oliver Lafont, Dec 05 2009

Keywords

Comments

Inserting x=1/sqrt(b) into the power series expansion of arctanh(x) yields the general BBP-type formula log((sqrt(b)+1)/(sqrt(b)-1))*sqrt(b)/2 = Sum_{k>=0} 1/((2k+1)b^k).
This sequence illustrates case b=5, with
Sum_{k>=0} 1/a(k) = sqrt(5)*log((1+sqrt(5))/2).

Crossrefs

Cf. A014480 ((2n+1)*2^n), A124647 ((2n+1)*3^n), A058962 ((2n+1)*4^n), A155988 ((2n+1)*9^n), A165283 ((2n+1)*16^n), A166725 ((2n+1)*25^n).

Programs

  • Magma
    [(2*n+1)*5^n: n in [0..25]]; // Vincenzo Librandi, Jun 08 2011
  • PARI
    a(n)=(2*n+1)*5^n
    

Formula

a(n) = 10*a(n-1) - 25*a(n-2).
O.g.f: (1+5*x)/(1-5*x)^2.
Sum_{n>=0} (-1)^n/a(n) = sqrt(5)*arctan(1/sqrt(5)). - Amiram Eldar, Feb 26 2022
E.g.f.: exp(5*x)*(1 + 10*x). - Stefano Spezia, May 09 2023

A199299 a(n) = (2*n + 1)*6^n.

Original entry on oeis.org

1, 18, 180, 1512, 11664, 85536, 606528, 4199040, 28553472, 191476224, 1269789696, 8344332288, 54419558400, 352638738432, 2272560758784, 14575734521856, 93096626946048, 592433080565760, 3757718396731392, 23765029860409344, 149902496042582016, 943288877536247808
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*6^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
    
  • Mathematica
    a[n_] := (2*n + 1)*6^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
  • PARI
    a(n) = (2*n+1)*6^n \\ Amiram Eldar, Dec 10 2022

Formula

a(n) = 12*a(n-1) - 36*a(n-2).
G.f.: (1+6*x)/(1-6*x)^2.
a(n) = 6*a(n-1) + 2*6^n. - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(6)*arccoth(sqrt(6)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(6)*arccot(sqrt(6)). (End)
E.g.f.: exp(6*x)*(1 + 12*x). - Stefano Spezia, May 07 2023

A060851 a(n) = (2n-1) * 3^(2n-1).

Original entry on oeis.org

3, 81, 1215, 15309, 177147, 1948617, 20726199, 215233605, 2195382771, 22082967873, 219667417263, 2165293113021, 21182215236075, 205891132094649, 1990280943581607, 19147875284802357, 183448998696332259, 1751104078464989745, 16660504517966902431
Offset: 1

Views

Author

Frank Ellermann, May 03 2001

Keywords

Comments

Denominators of odd terms in expansion of arctanh(s/3); numerators are all 1. - Gerry Martens, Jul 26 2015

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 28-40.

Crossrefs

Cf. A002162 (log(2)), A001620 (Euler's constant).

Programs

Formula

Sum_{n>=1} 2/a(n) = log(2).
Sum_{n>=1} (2/a(n) - zeta(2n+1)/(2^(2n)*(2n+1))) = gamma (Euler's constant).
Sum_{n>=1} ((4n+2)/a(n) - zeta(2n+1)/2^(2n))/(2n+1) = gamma (Euler's constant).
Sum_{n>=1} ((4n+2)/a(n) - zeta(2n+1)/2^(2n)) = 7/4.
Sum_{n>=1} ((2n+1)/a(n) - zeta(2n+1)/2^(2n+1)) = 7/8.
From R. J. Mathar, May 07 2013: (Start)
G.f.: 3*x*(1+9*x) / (9*x-1)^2.
a(n+1) = 3*A155988(n). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = arctan(1/3). - Amiram Eldar, Feb 26 2022
E.g.f.: (1 + exp(9*x)*(18*x - 1))/3. - Stefano Spezia, Dec 26 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001

A199300 a(n) = (2*n + 1)*7^n.

Original entry on oeis.org

1, 21, 245, 2401, 21609, 184877, 1529437, 12353145, 98001617, 766718533, 5931980229, 45478515089, 346032180025, 2616003280989, 19668469112621, 147174406808233, 1096686708796833, 8142067989552245, 60251303122686613, 444556912229552577, 3271482918202092041
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Programs

  • Magma
    [(2*n+1)*7^n: n in [0..30]]; // Vincenzo Librandi, Nov 05 2011
    
  • Mathematica
    a[n_] := (2*n + 1)*7^n; Array[a, 25, 0] (* Amiram Eldar, Dec 10 2022 *)
    LinearRecurrence[{14,-49},{1,21},30] (* Harvey P. Dale, Mar 26 2025 *)
  • PARI
    a(n) = (2*n+1)*7^n \\ Amiram Eldar, Dec 10 2022

Formula

a(n) = 14*a(n-1) - 49*a(n-2).
G.f.: (1+7*x)/(1-7*x)^2.
a(n) = 7*a(n-1) + 2*7^n. - Vincenzo Librandi, Nov 05 2011
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(7)*arccoth(sqrt(7)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(7)*arccot(sqrt(7)). (End)
E.g.f.: exp(7*x)*(1 + 14*x). - Stefano Spezia, May 09 2023

Extensions

a(15) corrected by Vincenzo Librandi, Nov 05 2011

A199301 a(n) = (2n+1)*8^n.

Original entry on oeis.org

1, 24, 320, 3584, 36864, 360448, 3407872, 31457280, 285212672, 2550136832, 22548578304, 197568495616, 1717986918400, 14843406974976, 127543348822016, 1090715534753792, 9288674231451648, 78812993478983680, 666532744850833408, 5620492334958379008, 47269781688880726016
Offset: 0

Views

Author

Philippe Deléham, Nov 04 2011

Keywords

Crossrefs

Cf. A001018 (Powers of 8), A005408 (2n+1).

Programs

Formula

a(n) = 16*a(n-1)-64*a(n-2).
G.f.: (1+8*x)/(1-8*x)^2.
a(n) = 8*(a(n-1)+2^(3*n-2)). - Vincenzo Librandi, Nov 05 2011
a(n) = A005408(n) * A001018(n). - Wesley Ivan Hurt, Oct 30 2014
From Amiram Eldar, Dec 10 2022: (Start)
Sum_{n>=0} 1/a(n) = sqrt(8)*arccoth(sqrt(8)).
Sum_{n>=0} (-1)^n/a(n) = sqrt(8)*arccot(sqrt(8)). (End)
E.g.f.: exp(8*x)*(1 + 16*x). - Stefano Spezia, May 09 2023

Extensions

a(18) corrected by Vincenzo Librandi, Nov 05 2011

A157327 Egyptian fraction expansion for Pi/4 = arctan(1/2) + arctan(1/3) (Hutton 1776).

Original entry on oeis.org

2, 3, -24, -81, 160, 1215, -896, -15309, 4608, 177147, -22528, -1948617, 106496, 20726199, -491520, -215233605, 2228224, 2195382771, -9961472, -22082967873, 44040192, 219667417263, -192937984, -2165293113021, 838860800
Offset: 0

Views

Author

Jaume Oliver Lafont, Feb 27 2009

Keywords

Comments

Sum_{n>=0} 1/a(n) = Pi/4.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 (1 - 4 x^2)/(1 + 4 x^2)^2 + 3 x (1 - 9 x^2)/(1 + 9 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 12 2012 *)

Formula

G.f.: 2*(1-4*x^2)/(1+4*x^2)^2 + 3*x*(1-9*x^2)/(1+9*x^2)^2.

A165283 a(n) = (2*n + 1)*16^n.

Original entry on oeis.org

1, 48, 1280, 28672, 589824, 11534336, 218103808, 4026531840, 73014444032, 1305670057984, 23089744183296, 404620279021568, 7036874417766400, 121597189939003392, 2089670227099910144, 35740566642812256256, 608742554432415203328, 10330176681277348904960
Offset: 0

Views

Author

Jaume Oliver Lafont, Sep 13 2009

Keywords

Crossrefs

Cf. A058962 ((2n+1)4^n), A155988 ((2n+1)9^n).

Programs

  • Magma
    [(2*n+1)*16^n: n in [0..20]]; // Vincenzo Librandi, Jun 08 2011
  • PARI
    a(n)=(2*n+1)*16^n
    

Formula

G.f.: (1+16*x)/(1-16*x)^2.
Sum_{n>=0} 1/a(n) = 2*log(5/3).
Sum_{n>=0} (-1)^n/a(n) = 4 * arctan(1/4). - Amiram Eldar, Jul 12 2020
E.g.f.: exp(16*x)*(1 + 32*x). - Stefano Spezia, May 09 2023

A166725 a(n) = (2*n+1)*25^n.

Original entry on oeis.org

1, 75, 3125, 109375, 3515625, 107421875, 3173828125, 91552734375, 2593994140625, 72479248046875, 2002716064453125, 54836273193359375, 1490116119384765625, 40233135223388671875, 1080334186553955078125, 28870999813079833984375, 768341124057769775390625
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 20 2009

Keywords

Crossrefs

Cf. A058962 ((2n+1)*4^n), A155988 ((2n+1)*9^n), A016578 (log(3/2)).

Programs

  • Magma
    [(2*n+1)*25^n: n in [0..20]]; // Vincenzo Librandi, Jun 08 2011
  • Mathematica
    Table[5^(2*n) *(2*n + 1), {n,0,10}] (* G. C. Greubel, May 24 2016 *)
    LinearRecurrence[{50,-625},{1,75},30] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    a(n)=(2*n+1)*25^n
    

Formula

G.f.: (1+25*x)/(1-25*x)^2.
Sum_{k>=0} 1/a(k) = (5/2)*log(3/2).
E.g.f.: (50*x + 1)*exp(25*x). - G. C. Greubel, May 24 2016
Sum_{n>=0} (-1)^n/a(n) = 5*arctan(1/5). - Amiram Eldar, Feb 26 2022

A362885 Array read by ascending antidiagonals: A(n, k) = (1 + 2*n)*k^n.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 6, 1, 0, 7, 20, 9, 1, 0, 9, 56, 45, 12, 1, 0, 11, 144, 189, 80, 15, 1, 0, 13, 352, 729, 448, 125, 18, 1, 0, 15, 832, 2673, 2304, 875, 180, 21, 1, 0, 17, 1920, 9477, 11264, 5625, 1512, 245, 24, 1, 0, 19, 4352, 32805, 53248, 34375, 11664, 2401, 320, 27, 1
Offset: 0

Views

Author

Stefano Spezia, May 08 2023

Keywords

Examples

			The array begins:
    1,  1,   1,    1,     1,     1, ...
    0,  3,   6,    9,    12,    15, ...
    0,  5,  20,   45,    80,   125, ...
    0,  7,  56,  189,   448,   875, ...
    0,  9, 144,  729,  2304,  5625, ...
    0, 11, 352, 2673, 11264, 34375, ...
    ...
		

Crossrefs

Cf. A000007 (k=0), A000012 (n=0), A004248, A005408 (k=1), A008585 (n=1), A014480 (k=2), A033429 (n=2), A058962 (k=4), A124647 (k=3), A155988 (k=9), A171220 (k=5), A176043, A199299 (k=6), A199300 (k=7), A199301 (k=8), A244727 (n=3), A362886 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(1+2n)k^n; Join[{1}, Table[A[n-k,k],{n,10},{k,0,n}]]//Flatten (* or *)
    A[n_,k_]:=SeriesCoefficient[(1+k*x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
    A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+2k*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten

Formula

A(n, k) = A005408(n)*A004248(n, k).
O.g.f. of column k: (1 + k*x)/(1 - k*x)^2.
E.g.f. of column k: exp(k*x)*(1 + 2*k*x).
A(n, n) = A176043(n+1).
Showing 1-9 of 9 results.