A096957 Fourth column (m=3) of (1,6)-Pascal triangle A096956.
6, 19, 40, 70, 110, 161, 224, 300, 390, 495, 616, 754, 910, 1085, 1280, 1496, 1734, 1995, 2280, 2590, 2926, 3289, 3680, 4100, 4550, 5031, 5544, 6090, 6670, 7285, 7936, 8624, 9350, 10115, 10920, 11766, 12654, 13585, 14560, 15580, 16646, 17759, 18920
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..3000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
I:=[6,19,40,70]; [n le 4 select I[n] else 4*Self(n-1)- 6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 19 2017
-
Mathematica
CoefficientList[Series[(6 - 5*x)/(1 - x)^4, {x, 0, 40}], x] (* Wesley Ivan Hurt, Apr 18 2017 *) LinearRecurrence[{4, -6, 4, -1}, {6, 19, 40, 70}, 50] (* Vincenzo Librandi, Apr 19 2017 *)
Formula
a(n) = A096956(n+3, 3) = 6*b(n) - 5*b(n-1) = (n+18)*binomial(n+2, 2)/3, with b(n) = A000292(n) = binomial(n+3, 3).
G.f.: (6-5*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Apr 19 2017
E.g.f.: exp(x)*(36 + 78*x + 24*x^2 + x^3)/6. - Stefano Spezia, May 02 2025
Comments