A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A096956
Pascal (1,6) triangle.
Original entry on oeis.org
6, 1, 6, 1, 7, 6, 1, 8, 13, 6, 1, 9, 21, 19, 6, 1, 10, 30, 40, 25, 6, 1, 11, 40, 70, 65, 31, 6, 1, 12, 51, 110, 135, 96, 37, 6, 1, 13, 63, 161, 245, 231, 133, 43, 6, 1, 14, 76, 224, 406, 476, 364, 176, 49, 6, 1, 15, 90, 300, 630, 882, 840, 540, 225, 55, 6, 1, 16, 105, 390, 930
Offset: 0
Triangle begins:
[0] 6;
[1] 1, 6;
[2] 1, 7, 6;
[3] 1, 8, 13, 6;
[4] 1, 9, 21, 19, 6;
[5] 1, 10, 30, 40, 25, 6;
...
Row sums:
A005009(n-1), n>=1, 6 if n=0; g.f.: (6-5*x)/(1-2*x). Alternating row sums are [6, -5, followed by 0's].
-
a(n,k):=piecewise(n=0,6,0Mircea Merca, Apr 08 2012
-
A096956[n_, k_] := If[n == k, 6, (5*k/n + 1)*Binomial[n, k]];
Table[A096956[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)
A097297
Seventh column (m=6) of (1,6)-Pascal triangle A096956.
Original entry on oeis.org
6, 37, 133, 364, 840, 1722, 3234, 5676, 9438, 15015, 23023, 34216, 49504, 69972, 96900, 131784, 176358, 232617, 302841, 389620, 495880, 624910, 780390, 966420, 1187550, 1448811, 1755747, 2114448, 2531584, 3014440, 3570952, 4209744
Offset: 0
A096958
Fifth column (m=4) of (1,6)-Pascal triangle A096956.
Original entry on oeis.org
6, 25, 65, 135, 245, 406, 630, 930, 1320, 1815, 2431, 3185, 4095, 5180, 6460, 7956, 9690, 11685, 13965, 16555, 19481, 22770, 26450, 30550, 35100, 40131, 45675, 51765, 58435, 65720, 73656, 82280, 91630, 101745, 112665, 124431, 137085, 150670
Offset: 0
A097300
Tenth column (m=9) of (1,6)-Pascal triangle A096956.
Original entry on oeis.org
6, 55, 280, 1045, 3190, 8437, 20020, 43615, 88660, 170170, 311168, 545870, 923780, 1514870, 2416040, 3759074, 5720330, 8532425, 12498200, 18007275, 25555530, 35767875, 49424700, 67492425, 91158600, 121872036, 161388480, 211822380
Offset: 0
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
A097298
Eighth column (m=7) of (1,6)-Pascal triangle A096956.
Original entry on oeis.org
6, 43, 176, 540, 1380, 3102, 6336, 12012, 21450, 36465, 59488, 93704, 143208, 213180, 310080, 441864, 618222, 850839, 1153680, 1543300, 2039180, 2664090, 3444480, 4410900, 5598450, 7047261, 8803008, 10917456, 13449040, 16463480
Offset: 0
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
A097299
Ninth column (m=8) of (1,6)-Pascal triangle A096956.
Original entry on oeis.org
6, 49, 225, 765, 2145, 5247, 11583, 23595, 45045, 81510, 140998, 234702, 377910, 591090, 901170, 1343034, 1961256, 2812095, 3965775, 5509075, 7548255, 10212345, 13656825, 18067725, 23666175, 30713436, 39516444, 50433900, 63882940
Offset: 0
- Paolo Xausa, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Showing 1-7 of 7 results.
Comments