cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A096956 Pascal (1,6) triangle.

Original entry on oeis.org

6, 1, 6, 1, 7, 6, 1, 8, 13, 6, 1, 9, 21, 19, 6, 1, 10, 30, 40, 25, 6, 1, 11, 40, 70, 65, 31, 6, 1, 12, 51, 110, 135, 96, 37, 6, 1, 13, 63, 161, 245, 231, 133, 43, 6, 1, 14, 76, 224, 406, 476, 364, 176, 49, 6, 1, 15, 90, 300, 630, 882, 840, 540, 225, 55, 6, 1, 16, 105, 390, 930
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Comments

Except for the first row this is the row reversed (6,1)-Pascal triangle A093563.
This is the sixth member, q=6, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1)), A029635 (q=2) (but with a(0,0)=2, not 1), A095660 (q=3), A095666 (q=4), A096940 (q=5).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column no. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x):=Sum_{m=0..n} a(n,m)*x^m is G(z,x)=g(z)/(1-x*z*f(z)). Here: g(x)=(6-5*x)/(1-x), f(x)=1/(1-x), hence G(z,x)=(6-5*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k) = A022097(n-2), n >= 2, with n=1 value 6. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.

Examples

			Triangle begins:
  [0]  6;
  [1]  1,  6;
  [2]  1,  7,  6;
  [3]  1,  8, 13,  6;
  [4]  1,  9, 21, 19,  6;
  [5]  1, 10, 30, 40, 25,  6;
  ...
		

Crossrefs

Row sums: A005009(n-1), n>=1, 6 if n=0; g.f.: (6-5*x)/(1-2*x). Alternating row sums are [6, -5, followed by 0's].
Column sequences (without leading zeros) give for m=1..9, with n >= 0: A000027(n+6), A056115, A096957-9, A097297-A097300.

Programs

  • Maple
    a(n,k):=piecewise(n=0,6,0Mircea Merca, Apr 08 2012
  • Mathematica
    A096956[n_, k_] := If[n == k, 6, (5*k/n + 1)*Binomial[n, k]];
    Table[A096956[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)

Formula

Recursion: a(n,m)=0 if m > n, a(0,0) = 6; a(n,0) = 1 if n >= 1; a(n,m) = a(n-1, m) + a(n-1, m-1).
G.f. column m (without leading zeros): (6-5*x)/(1-x)^(m+1), m >= 0.
a(n,k) = (1+5*k/n)*binomial(n,k), for n > 0. - Mircea Merca, Apr 08 2012

A096957 Fourth column (m=3) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 19, 40, 70, 110, 161, 224, 300, 390, 495, 616, 754, 910, 1085, 1280, 1496, 1734, 1995, 2280, 2590, 2926, 3289, 3680, 4100, 4550, 5031, 5544, 6090, 6670, 7285, 7936, 8624, 9350, 10115, 10920, 11766, 12654, 13585, 14560, 15580, 16646, 17759, 18920
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Comments

If Y is a 6-subset of an n-set X then, for n>=8, a(n-8) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 16 2007

Crossrefs

Cf. other columns: A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097299 (m = 8), A097300 (m = 9).

Programs

  • Magma
    I:=[6,19,40,70]; [n le 4 select I[n] else 4*Self(n-1)- 6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 19 2017
  • Mathematica
    CoefficientList[Series[(6 - 5*x)/(1 - x)^4, {x, 0, 40}], x] (* Wesley Ivan Hurt, Apr 18 2017 *)
    LinearRecurrence[{4, -6, 4, -1}, {6, 19, 40, 70}, 50] (* Vincenzo Librandi, Apr 19 2017 *)

Formula

a(n) = A096956(n+3, 3) = 6*b(n) - 5*b(n-1) = (n+18)*binomial(n+2, 2)/3, with b(n) = A000292(n) = binomial(n+3, 3).
G.f.: (6-5*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Apr 19 2017
E.g.f.: exp(x)*(36 + 78*x + 24*x^2 + x^3)/6. - Stefano Spezia, May 02 2025

A096958 Fifth column (m=4) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 25, 65, 135, 245, 406, 630, 930, 1320, 1815, 2431, 3185, 4095, 5180, 6460, 7956, 9690, 11685, 13965, 16555, 19481, 22770, 26450, 30550, 35100, 40131, 45675, 51765, 58435, 65720, 73656, 82280, 91630, 101745, 112665, 124431, 137085, 150670
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097299 (m = 8), A097300 (m = 9).

Programs

  • Magma
    [(n+24)*Binomial(n+3, 3) div 4: n in [0..40]]; // Vincenzo Librandi, Oct 01 2013
  • Mathematica
    Table[(n + 24) Binomial[n+3, 3]/4, {n, 0, 50}] (* Vincenzo Librandi, Oct 01 2013 *)

Formula

a(n) = A096956(n+4, 4) = 6*b(n) - 5*b(n-1) = (n+24)*binomial(n+3, 3)/4, with b(n) = A000332(n) = binomial(n+4, 4).
G.f.: (6-5*x)/(1-x)^5.
a(n) = sum_{k=1..n+1} ( sum_{i=1..k} i*(n-k+7) ). - Wesley Ivan Hurt, Sep 26 2013

A096959 Sixth column (m=5) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 31, 96, 231, 476, 882, 1512, 2442, 3762, 5577, 8008, 11193, 15288, 20468, 26928, 34884, 44574, 56259, 70224, 86779, 106260, 129030, 155480, 186030, 221130, 261261, 306936, 358701, 417136, 482856, 556512, 638792, 730422, 832167, 944832
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. A096958 (fifth column), A097297 (seventh column).

Programs

  • Magma
    [(n+30)*Binomial(n+4, 4)/5: n in [0..30]]; // G. C. Greubel, Nov 24 2017
  • Mathematica
    Table[(n + 30)*Binomial[n + 4, 4]/5, {n, 0, 50}] (* G. C. Greubel, Nov 24 2017 *)
  • PARI
    for(n=0,30, print1((n+30)*binomial(n+4, 4)/5, ", ")) \\ G. C. Greubel, Nov 24 2017
    

Formula

a(n) = A096956(n+5, 5).
a(n) = 6*b(n) - 5*b(n-1), with b(n) = A000389(n+5) = binomial(n+5, 5).
a(n) = (n+30)*binomial(n+4, 4)/5.
G.f.: (6-5*x)/(1-x)^6.
E.g.f.: x*(720 + 1140*x + 420*x^2 + 45*x^3 + x^4)*exp(x)/120. - G. C. Greubel, Nov 24 2017

A097300 Tenth column (m=9) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 55, 280, 1045, 3190, 8437, 20020, 43615, 88660, 170170, 311168, 545870, 923780, 1514870, 2416040, 3759074, 5720330, 8532425, 12498200, 18007275, 25555530, 35767875, 49424700, 67492425, 91158600, 121872036, 161388480, 211822380
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097299 (m = 8).

Programs

Formula

a(n) = A096956(n+9, 9) = 6*b(n) - 5*b(n-1) = (n+54)*binomial(n+8, 8)/9, with b(n) = A000582(n+9) = binomial(n+9, 9).
G.f.: (6-5*x)/(1-x)^10.

A097298 Eighth column (m=7) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 43, 176, 540, 1380, 3102, 6336, 12012, 21450, 36465, 59488, 93704, 143208, 213180, 310080, 441864, 618222, 850839, 1153680, 1543300, 2039180, 2664090, 3444480, 4410900, 5598450, 7047261, 8803008, 10917456, 13449040, 16463480
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097299 (m = 8), A097300 (m = 9).

Programs

Formula

a(n) = A096956(n+7, 7) = 6*b(n) - 5*b(n-1) = (n+42)*binomial(n+6, 6)/7, with b(n) = A000580(n+7) = binomial(n+7, 7).
G.f.: (6-5*x)/(1-x)^8.

A097299 Ninth column (m=8) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 49, 225, 765, 2145, 5247, 11583, 23595, 45045, 81510, 140998, 234702, 377910, 591090, 901170, 1343034, 1961256, 2812095, 3965775, 5509075, 7548255, 10212345, 13656825, 18067725, 23666175, 30713436, 39516444, 50433900, 63882940
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097300 (m = 9).

Programs

Formula

a(n) = A096956(n+8, 8) = 6*b(n) - 5*b(n-1) = (n+48)*binomial(n+7, 7)/8, with b(n) = A000581(n+8) = binomial(n+8, 8).
G.f.: (6-5*x)/(1-x)^9.
Showing 1-7 of 7 results.