cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A096957 Fourth column (m=3) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 19, 40, 70, 110, 161, 224, 300, 390, 495, 616, 754, 910, 1085, 1280, 1496, 1734, 1995, 2280, 2590, 2926, 3289, 3680, 4100, 4550, 5031, 5544, 6090, 6670, 7285, 7936, 8624, 9350, 10115, 10920, 11766, 12654, 13585, 14560, 15580, 16646, 17759, 18920
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Comments

If Y is a 6-subset of an n-set X then, for n>=8, a(n-8) is the number of 3-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 16 2007

Crossrefs

Cf. other columns: A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097299 (m = 8), A097300 (m = 9).

Programs

  • Magma
    I:=[6,19,40,70]; [n le 4 select I[n] else 4*Self(n-1)- 6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 19 2017
  • Mathematica
    CoefficientList[Series[(6 - 5*x)/(1 - x)^4, {x, 0, 40}], x] (* Wesley Ivan Hurt, Apr 18 2017 *)
    LinearRecurrence[{4, -6, 4, -1}, {6, 19, 40, 70}, 50] (* Vincenzo Librandi, Apr 19 2017 *)

Formula

a(n) = A096956(n+3, 3) = 6*b(n) - 5*b(n-1) = (n+18)*binomial(n+2, 2)/3, with b(n) = A000292(n) = binomial(n+3, 3).
G.f.: (6-5*x)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Apr 19 2017
E.g.f.: exp(x)*(36 + 78*x + 24*x^2 + x^3)/6. - Stefano Spezia, May 02 2025

A097297 Seventh column (m=6) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 37, 133, 364, 840, 1722, 3234, 5676, 9438, 15015, 23023, 34216, 49504, 69972, 96900, 131784, 176358, 232617, 302841, 389620, 495880, 624910, 780390, 966420, 1187550, 1448811, 1755747, 2114448, 2531584, 3014440, 3570952, 4209744
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097298 (m = 7), A097299 (m = 8), A097300 (m = 9).

Programs

Formula

a(n) = A096956(n+6, 6) = 6*b(n) - 5*b(n-1) = (n+36)*binomial(n+5, 5)/6, with b(n) = A000579(n+6) = binomial(n+6, 6).
G.f.: (6-5*x)/(1-x)^7.

A096958 Fifth column (m=4) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 25, 65, 135, 245, 406, 630, 930, 1320, 1815, 2431, 3185, 4095, 5180, 6460, 7956, 9690, 11685, 13965, 16555, 19481, 22770, 26450, 30550, 35100, 40131, 45675, 51765, 58435, 65720, 73656, 82280, 91630, 101745, 112665, 124431, 137085, 150670
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097299 (m = 8), A097300 (m = 9).

Programs

  • Magma
    [(n+24)*Binomial(n+3, 3) div 4: n in [0..40]]; // Vincenzo Librandi, Oct 01 2013
  • Mathematica
    Table[(n + 24) Binomial[n+3, 3]/4, {n, 0, 50}] (* Vincenzo Librandi, Oct 01 2013 *)

Formula

a(n) = A096956(n+4, 4) = 6*b(n) - 5*b(n-1) = (n+24)*binomial(n+3, 3)/4, with b(n) = A000332(n) = binomial(n+4, 4).
G.f.: (6-5*x)/(1-x)^5.
a(n) = sum_{k=1..n+1} ( sum_{i=1..k} i*(n-k+7) ). - Wesley Ivan Hurt, Sep 26 2013

A097300 Tenth column (m=9) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 55, 280, 1045, 3190, 8437, 20020, 43615, 88660, 170170, 311168, 545870, 923780, 1514870, 2416040, 3759074, 5720330, 8532425, 12498200, 18007275, 25555530, 35767875, 49424700, 67492425, 91158600, 121872036, 161388480, 211822380
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097299 (m = 8).

Programs

Formula

a(n) = A096956(n+9, 9) = 6*b(n) - 5*b(n-1) = (n+54)*binomial(n+8, 8)/9, with b(n) = A000582(n+9) = binomial(n+9, 9).
G.f.: (6-5*x)/(1-x)^10.

A097299 Ninth column (m=8) of (1,6)-Pascal triangle A096956.

Original entry on oeis.org

6, 49, 225, 765, 2145, 5247, 11583, 23595, 45045, 81510, 140998, 234702, 377910, 591090, 901170, 1343034, 1961256, 2812095, 3965775, 5509075, 7548255, 10212345, 13656825, 18067725, 23666175, 30713436, 39516444, 50433900, 63882940
Offset: 0

Views

Author

Wolfdieter Lang, Aug 13 2004

Keywords

Crossrefs

Cf. other columns: A096957 (m = 3), A096958 (m = 4), A096959 (m = 5), A097297 (m = 6), A097298 (m = 7), A097300 (m = 9).

Programs

Formula

a(n) = A096956(n+8, 8) = 6*b(n) - 5*b(n-1) = (n+48)*binomial(n+7, 7)/8, with b(n) = A000581(n+8) = binomial(n+8, 8).
G.f.: (6-5*x)/(1-x)^9.
Showing 1-5 of 5 results.