cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A097034 Initial values for iteration of the function f(x) = A063919(x) such that the iteration ends in a 14-cycle, i.e., in A097030.

Original entry on oeis.org

1506, 1518, 1806, 1902, 1914, 1938, 1950, 2226, 2382, 2394, 2406, 2418, 2478, 2826, 2910, 2946, 2958, 3234, 3282, 3294, 3330, 3510, 3522, 3534, 3546, 3582, 3642, 3654, 3774, 3906, 3954, 3966, 3978, 4146, 4158, 4194, 4434, 4446, 4854, 4866, 4878, 5262
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n=1506 is here because its iteration list = {1506, 1518, 1938, 2382, 2394, 2406, [2418, ...., 3582, 2418}. After a transient of length 6, the iteration ends in a cycle of length 14.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] :=
     Total[Select[Divisors[n], GCD[#, n/#] == 1 &]] - n /; n > 1
    a097034Q[k_] :=
     Module[{iter = NestWhileList[a063919, k, UnsameQ, All]},
      Apply[Subtract, Reverse[Flatten[Position[iter, Last[iter]], 1]]] ==
       14]
    a097034[n_] := Select[Range[n], a097034Q]
    a097034[5262] (* Hartmut F. W. Hoft, Jan 25 2024 *)

A097024 Numbers in the 5-cycle-attractor of the function f(x)=A063919(x).

Original entry on oeis.org

1482, 1878, 1890, 2142, 2178
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Comments

A002827 provides 1-cycle terms = unitary perfect numbers.
A063991 gives 2-cycle elements = unitary amicable numbers.
A097030 collects true 14-cycle elements, i.e., terms in end-cycle of length 14 when A063919(x) function is iterated.
Concerning 3-cycle elements, only {30,42,54} were encountered.

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    a097024Q[k_] := Module[{a=NestList[a063919, k, 5]}, Count[a, k]==2&&Last[a]==k]
    a097024[n_] := Select[Range[n], a097024Q]
    a097024[2178] (* Hartmut F. W. Hoft, Jan 24 2024 *)
  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok5(n) = iferr(f(f(f(f(f(n))))) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = !isok1(n) && isok5(n); \\ Michel Marcus, Sep 28 2018

A097037 Initial values for iteration of A063919(x) function such that iteration ends in a 2-cycle, i.e., "attracted" by unitary amicable numbers, A063991.

Original entry on oeis.org

102, 114, 126, 388, 436, 484, 812, 866, 1020, 1036, 1040, 1116, 1140, 1196, 1260, 1380, 1500, 1524, 1532, 1552, 1618, 1644, 1716, 1724, 1726, 1744, 1916, 2020, 2066, 2068, 2324, 2368, 2386, 2486, 2592, 2684, 2880, 2924, 3032, 3098, 3120, 3124, 3136
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n = 866: list = {866, 436, 114, 126, 114} ending in 2-cycle of [114, 126].
		

Crossrefs

Programs

  • Mathematica
    s[n_] := If[n > 1, Times @@ (1 + Power @@@ FactorInteger[n]) - n, 0]; useq[n_] := Most[NestWhileList[s, n, UnsameQ, All]]; amiQ[k_] := Module[{s1 = s[k]}, s1 != k && s[s1] == k]; aQ[n_] := amiQ[Last[useq[n]]]; Select[Range[5000], aQ] (* Amiram Eldar, Apr 06 2019 *)

A097032 Total length of transient and terminal cycle if unitary-proper-divisor-sum function f(x) = A034460(x) is iterated and the initial value is n. Number of distinct terms in iteration list, including also the terminal 0 in the count if the iteration doesn't end in a cycle.

Original entry on oeis.org

2, 3, 3, 3, 3, 1, 3, 3, 3, 4, 3, 4, 3, 5, 4, 3, 3, 5, 3, 5, 4, 6, 3, 5, 3, 4, 3, 5, 3, 3, 3, 3, 5, 6, 4, 6, 3, 7, 4, 6, 3, 3, 3, 4, 5, 5, 3, 6, 3, 6, 5, 6, 3, 3, 4, 4, 4, 4, 3, 1, 3, 7, 4, 3, 4, 3, 3, 7, 4, 8, 3, 6, 3, 7, 4, 6, 4, 2, 3, 7, 3, 5, 3, 7, 4, 6, 6, 6, 3, 1, 5, 6, 5, 7, 4, 7, 3, 7, 5, 4, 3, 3, 3, 7, 7
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			From _Antti Karttunen_, Sep 24 2018: (Start)
For n = 1, A034460(1) = 0, thus a(1) = 1+1 = 2.
For n = 2, A034460(2) = 1, and A034460(1) = 0, so we end to the zero after a transient part of length 2, thus a(2) = 2+1 = 3.
For n = 30, A034460(30) = 42, A034460(42) = 54, A034460(54) = 30, thus a(30) = a(42) = a(54) = 0+3 = 3, as 30, 42 and 54 are all contained in their own terminal cycle of length 3, without a preceding transient part. (End)
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 6+14 = 20.
		

Crossrefs

Cf. A002827 (the positions of ones).
Cf. A318882 (sequence that implements the original definition of this sequence).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>0
    a097032[n_] := Map[Length[NestWhileList[a034460, #, UnsameQ, All]]-1&, Range[n]]
    a097032[105] (* Hartmut F. W. Hoft, Jan 24 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A097032(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(j-1), mapput(visited, n, j)); n = A034460(n); if(!n,return(j+1))); }; \\ Antti Karttunen, Sep 23 2018

Formula

a(n) = A318882(n) + (1-A318880(n)). - Antti Karttunen, Sep 23 2018

Extensions

Definition corrected (to agree with the given terms) by Antti Karttunen, Sep 23 2018, based on observations by Hartmut F. W. Hoft

A097031 Length of terminal cycle if unitary-proper-divisor-sum function f(x) = A063919(x) is iterated and the initial value is n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			From _Antti Karttunen_, Sep 22 2018: (Start)
For n = 1, A063919(1) = 1, that is, we immediately end with a terminal cycle of length 1 without a preceding transient part, thus a(1) = 1.
For n = 2, A063919(2) = 1, and A063919(1) = 1, so we end with a terminal cycle of length 1 (after a transient part of length 1) thus a(2) = 1.
For n = 30, A063919(30) = 42, A063919(42) = 54, A063919(54) = 30, thus a(30) = a(42) = a(54) = 3, as 30, 42 and 54 are all contained in their own terminal cycle of length 3, without a preceding transient part. (End)
For n = 1506, the iteration-list is {1506, 1518, 1938, 2382, 2394, 2406, [2418, 2958, 3522, 3534, 4146, 4158, 3906, 3774, 4434, 4446, 3954, 3966, 3978, 3582, 2418, ..., ad infinitum]}. After a transient of length 6 the iteration ends in a cycle of length 14, thus a(1506) = 14.
		

Crossrefs

Programs

  • Mathematica
    a063919[1] = 1; (* function a[] in A063919 by Jean-François Alcover *)
    a063919[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>1
    cycleLength[k_] := Module[{cycle=NestWhileList[a063919, k, UnsameQ, All]}, Apply[Subtract, Reverse[Flatten[Position[cycle, Last[cycle]], 1]]]]
    a097031[n_] := Map[cycleLength, Range[n]]
    a097031[105] (* Hartmut F. W. Hoft, Jan 24 2024 *)
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A063919(n) = if(1==n,n,A034460(n));
    A097031(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(j-mapget(visited, n)), mapput(visited, n, j)); n = A063919(n)); };
    \\ Or by using lists:
    pil(item,lista) = { for(i=1,#lista,if(lista[i]==item,return(i))); (0); };
    A097031(n) = { my(visited = List([]), k); for(j=1, oo, if((k = pil(n,visited)) > 0, return(j-k)); listput(visited, n); n = A063919(n)); }; \\ Antti Karttunen, Sep 22 2018

Formula

a(n) = A318882(n) - A318883(n). - Antti Karttunen, Sep 22 2018

A097036 Initial values for iteration of A063919[x] function such that iteration ends in a 3-cycle.

Original entry on oeis.org

30, 42, 54, 100, 140, 148, 194, 196, 208, 220, 238, 252, 274, 288, 300, 336, 348, 350, 364, 374, 380, 382, 386, 400, 420, 440, 492, 516, 528, 540, 542, 550, 592, 600, 612, 660, 694, 708, 720, 722, 740, 756, 758, 764, 766, 780, 792, 794, 820, 836, 900, 932
Offset: 1

Views

Author

Labos Elemer, Aug 30 2004

Keywords

Examples

			n=100: list={100, [30, 42, 54], 30, ... after 1 transient a 3-cycle arises.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := If[n > 1, Times @@ (1 + Power @@@ FactorInteger[n]) - n, 0]; useq[n_] := Most[NestWhileList[s, n, UnsameQ, All]]; cycleQ[k_] := Module[{s1 = s[k]}, s1 != k && s[s[s1]] == k]; aQ[n_] := cycleQ[Last[useq[n]]]; Select[Range[1000], aQ] (* Amiram Eldar, Apr 06 2019 *)

A003062 Beginnings of periodic unitary aliquot sequences.

Original entry on oeis.org

6, 30, 42, 54, 60, 66, 78, 90, 100, 102, 114, 126, 140, 148, 194, 196, 208, 220, 238, 244, 252, 274, 288, 292, 300, 336, 348, 350, 364, 374, 380, 382, 386, 388, 400, 420, 436, 440, 476, 482, 484, 492, 516, 528, 540, 542, 550, 570, 578, 592, 600, 612, 648, 660, 680, 688, 694, 708, 720, 722, 740, 756, 758, 764, 766, 770, 780, 784, 792, 794, 812
Offset: 1

Views

Author

Keywords

Comments

Provided that A034460 has no infinite unbounded trajectories, these are also numbers m such that when iterating the map k -> A034460(k), starting from k = m, the iteration will never reach 0, that is, will instead eventually enter into a finite cycle. - Antti Karttunen, Sep 23 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A034460, A097010 (complement), A318880 (characteristic function).

Programs

  • Mathematica
    a034460[0] = 0; (* avoids dividing by 0 when an iteration reaches 0 *)
    a034460[n_] := Total[Select[Divisors[n], GCD[#, n/#]==1&]]-n/;n>0
    periodicQ[k_] := NestWhile[a034460, k, UnsameQ, All]!=0
    nmax = 812; Select[Range[nmax], periodicQ]
    (* Hartmut F. W. Hoft, Jan 24 2024 *)
  • PARI
    up_to = 20000;
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A318880(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(1), mapput(visited, n, j)); n = A034460(n); if(!n,return(0))); };
    A003062list(up_to) = { my(v = vector(up_to), k=0, n=1); while(kA318880(n), k++; v[k] = n); n++); (v); };
    v003062 = A003062list(up_to);
    A003062(n) = v003062[n]; \\ Antti Karttunen, Sep 23 2018

Extensions

More terms from Antti Karttunen, Sep 23 2018

A098185 If f(x) = (sum of unitary proper divisors of x) = A063919(x) is iterated, the iteration may lead to a fixed point which is either equals 0 or it is from A002827, a unitary perfect number > 1: 6,60,90,87360... Here initial values are collected for which the iteration ends in a unitary perfect number > 1.

Original entry on oeis.org

6, 60, 66, 78, 90, 244, 292, 476, 482, 578, 648, 680, 688, 770, 784, 832, 864, 956, 958, 976, 1168, 1354, 1360, 1392, 1488, 1600, 1658, 1670, 1906, 2232, 2264, 2294, 2376, 2480, 2552, 2572, 2576, 2626, 2712, 2732, 2806, 2842, 2870, 2904, 2912, 2992, 3024
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Examples

			Initial values attracted by 87360 (4th unitary perfect number) are collected separately in A098186.
It seems that 6 is the only initial value ending in fixed point = 6.
		

Crossrefs

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x],Flatten[Position[GCD[di[x],Reverse[di[x]]],1]]]; asu[x_] :=Apply[Plus,ud[x]]-x;nsf[x_,ho_] :=NestList[asu,x,ho] Do[g=n;s=Last[NestList[asu,n,100]]; If[Equal[s,6]||Equal[s,60]||Equal[s,90],Print[{n,s}]; ta=Append[ta,n]],{n,1,256}];ta = Delete[ta,1]

A319902 Unitary sociable numbers of order 4.

Original entry on oeis.org

263820, 263940, 280380, 280500, 395730, 395910, 420570, 420750, 172459210, 209524210, 218628662, 218725430, 230143790, 231439570, 246667790, 272130250, 384121920, 384296640, 408233280, 408408000
Offset: 1

Views

Author

Michel Marcus, Oct 01 2018

Keywords

Comments

Is this a duplicate of A098188? - R. J. Mathar, Oct 04 2018
Note that the first 4 terms and the next 4 terms form two sociable groups. But then the next 8 terms belong to two distinct sociable groups, whereas in A098188 the integers are grouped by cycle.
From Hartmut F. W. Hoft, Aug 23 2023: (Start)
This sequence is A098188 in ascending order.
Among the 19 4-cycles listed in the link by J. O. M. Pedersen only four of the 6 possible patterns of relative sizes of the numbers in a cycle are realized. (End)

Crossrefs

Cf. A063919 (sum of proper unitary divisors).
Cf. A002827 (unitary perfect), A063991 (unitary amicable).
Cf. A097024 (order 5), A097030 (order 14).
Cf. A090615 (least member of sociable quadruples).
Cf. A098188.

Programs

  • Mathematica
    f[n_] := f[n] = Module[{s = 0}, s = Total[Select[Divisors[n], GCD[#, n/#] == 1 &]]; Return[s - n]]; isok1[n_] := isok1[n] = Quiet[Check[f[n] == n, 0]]; isok2[n_] := isok2[n] = Quiet[Check[f[f[n]] == n, 0]]; isok4[n_] := isok4[n] = Quiet[Check[f[f[f[f[n]]]] == n, 0]]; isok[n_] := isok[n] = isok4[n] && Not[isok1[n]] && Not[isok2[n]]; Monitor[Position[Table[isok[n], {n, 1, 408408000}], True], n] (* Robert P. P. McKone, Aug 24 2023 *)
  • PARI
    f(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d)) - n;
    isok4(n) = iferr(f(f(f(f(n)))) == n, E, 0);
    isok2(n) = iferr(f(f(n)) == n, E, 0);
    isok1(n) = iferr(f(n) == n, E, 0);
    isok(n) = isok4(n) && !isok1(n) && !isok2(n);

A097010 Numbers n such that zero is eventually reached when the map x -> A034460(x) is iterated, starting from x = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79
Offset: 1

Views

Author

Labos Elemer, Aug 31 2004

Keywords

Comments

Numbers n for which A318880(n) = 0. - Antti Karttunen, Sep 23 2018
The sequence doesn't contain any numbers from attractor sets like A002827, A063991, A097024, A097030, etc, nor any number x such that the iteration of the map x -> A034460(x) would lead to such an attractor set (e.g., numbers in A097034 - A097037). - Antti Karttunen, Sep 24 2018, after the original author's example.

Crossrefs

Cf. A003062 (complement), A318880.
Differs from A129487 for the first time at n=51, as A129487(51) = 54, but that term is lacking here, as in this sequence a(51) = 55.

Programs

  • Mathematica
    di[x_] :=Divisors[x];ta={{0}}; ud[x_] :=Part[di[x],Flatten[Position[GCD[di[x],Reverse[di[x]]],1]]]; asu[x_] :=Apply[Plus,ud[x]]-x;nsf[x_,ho_] :=NestList[asu,x,ho] Do[g=n;s=Last[NestList[asu,n,100]];If[Equal[s,0],Print[{n,s}]; ta=Append[ta,n]],{n,1,256}];ta = Delete[ta,1]
  • PARI
    up_to = 10000;
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A318880(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(1), mapput(visited, n, j)); n = A034460(n); if(!n,return(0))); };
    A097010list(up_to) = { my(v = vector(up_to), k=0, n=1); while(kA318880(n), k++; v[k] = n); n++); (v); };
    v097010 = A097010list(up_to);
    A097010(n) = v097010[n]; \\ Antti Karttunen, Sep 24 2018

Extensions

Edited by Antti Karttunen, Sep 24 2018
Showing 1-10 of 21 results. Next