A127653 Integers whose unitary aliquot sequences terminate in 0, including 1 but excluding the other trivial cases in which n is itself either a prime or a prime power.
1, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 36, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 55, 56, 57, 58, 62, 63, 65, 68, 69, 70, 72, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 98, 99, 104, 105, 106, 108, 110, 111, 112, 115
Offset: 1
Keywords
Examples
a(5) = 15 because the fifth integer that is neither prime nor a prime power and whose unitary aliquot sequence terminates in 0 is 15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Herman J. J. te Riele, Unitary Aliquot Sequences, MR 139/72, Mathematisch Centrum, Amsterdam, 1972.
- Herman J. J. te Riele, Further Results on Unitary Aliquot Sequences, NW 2/73, Mathematisch Centrum, Amsterdam, 1973.
Programs
-
Mathematica
UnitaryDivisors[n_Integer?Positive] := Select[Divisors[n], GCD[ #, n/# ] == 1 \ &]; sstar[n_] := Plus @@ UnitaryDivisors[ n] - n; pp[k_] := If[Length[ FactorInteger[k]] == 1, True, False]; g[n_] := If[n > 0, sstar[n], 0]; UnitaryTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Select[Range[100], Last[UnitaryTrajectory[ # ]] == 0 && ! pp[ # ] &] s[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; s[0] = s[1] = 0; q[n_] := If[PrimeNu[n] == 1, False, Module[{v = NestWhileList[s, n, UnsameQ, All]}, v[[-1]] == 0]]; Select[Range[120], q] (* Amiram Eldar, Mar 11 2023 *)
Extensions
More terms from Amiram Eldar, Mar 11 2023
Comments