cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097076 Expansion of g.f. x/(1 - x - 3*x^2 - x^3).

Original entry on oeis.org

0, 1, 1, 4, 8, 21, 49, 120, 288, 697, 1681, 4060, 9800, 23661, 57121, 137904, 332928, 803761, 1940449, 4684660, 11309768, 27304197, 65918161, 159140520, 384199200, 927538921, 2239277041, 5406093004, 13051463048, 31509019101, 76069501249, 183648021600
Offset: 0

Views

Author

Paul Barry, Jul 22 2004

Keywords

Comments

Counts walks of length n between two vertices of a triangle, when a loop has been added at the third vertex.
a(n) is the center term of the 3 X 3 matrix [0,1,0; 0,0,1; 1,3,1]^n. - Gary W. Adamson, May 30 2008
Starting (1, 1, 4, 8, 21, ...) = row sums of triangle A157898. - Gary W. Adamson, Mar 08 2009
Convolution of Pell(n) = A000129(n) and (-1)^n. - Paul Barry, Oct 22 2009
a(n+1) is the number of ways to choose points on a 2 X n lattice eliminating the upper left and lower right corners such that the points are not adjacent to each other. (See A375726 for proof) - Yifan Xie, Aug 25 2024
a(n+1) is the number of compositions (ordered partitions) of n into parts 1, 2, and 3 where there are three kinds of part 2. - Joerg Arndt, Aug 27 2024

Crossrefs

Programs

  • Magma
    [(Evaluate(DicksonFirst(n,-1), 2) -2*(-1)^n)/4: n in [0..40]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    CoefficientList[Series[x/(1-x-3x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{1,3,1},{0,1,1},40]  (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
  • SageMath
    [(lucas_number2(n,2,-1) -2*(-1)^n)/4 for n in (0..40)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = ( (1+sqrt(2))^n + (1-sqrt(2))^n - 2*(-1)^n )/4.
a(n) = a(n-1) + 3*a(n-2) + a(n-3). [corrected by Paul Curtz, Mar 04 2008]
a(n) = (Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^k)/2 - (-1)^n/2.
a(n) = (A001333(n) - (-1)^n)/2.
a(n) = Sum_{k=0..n} (-1)^k*Pell(n-k). - Paul Barry, Oct 22 2009
From R. J. Mathar, Jul 06 2011: (Start)
G.f.: x / ( (1+x)*(1-2*x-x^2) ).
a(n) + a(n+1) = A000129(n+1). (End)
E.g.f.: (exp(x)*cosh(sqrt(2)*x) - cosh(x) + sinh(x))/2. - Stefano Spezia, Mar 31 2024