A100139
a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k) * 3^k * 2^(n-6k).
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 67, 152, 376, 992, 2704, 7424, 20233, 54398, 144112, 376736, 974368, 2500544, 6385435, 16264220, 41396788, 105423776, 268818064, 686499008, 1755723793, 4495691834, 11521647916, 29543647160, 75774096832, 194353495424
Offset: 0
-
LinearRecurrence[{6,-12,8,0,0,3},{1,2,4,8,16,32},30] (* Harvey P. Dale, Sep 30 2015 *)
A097123
Expansion of (1-x)^2/((1-x)^3 - 4*x^3).
Original entry on oeis.org
1, 1, 1, 5, 17, 41, 97, 253, 673, 1745, 4481, 11573, 30001, 77689, 200929, 519725, 1344833, 3479969, 9004033, 23296357, 60276817, 155961545, 403535969, 1044107357, 2701521889, 6989923441, 18085741441, 46795063445, 121077583217
Offset: 0
-
LinearRecurrence[{3, -3, 5}, {1, 1, 1}, 30] (* Amiram Eldar, Oct 11 2021 *)
CoefficientList[Series[(1-x)^2/((1-x)^3-4x^3),{x,0,30}],x] (* Harvey P. Dale, May 06 2022 *)
-
a(n) = sum(k=0, n\3, binomial(n, 3*k) * 4^k); \\ Michel Marcus, Oct 11 2021
A372076
The sequence T_{3,1}(n,3).
Original entry on oeis.org
0, 1, 2, 3, 7, 20, 51, 121, 290, 711, 1747, 4268, 10407, 25405, 62066, 151611, 370255, 904196, 2208267, 5393233, 13171682, 32168415, 78563131, 191870876, 468596895, 1144430581, 2794984562, 6826049523, 16670917207, 40714541300
Offset: 0
- Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
-
a[n_] := Sum[Sum[Binomial[n - j - 1, 3*k]*3^k, {k,0,n-j-1}], {j,0,n-1}]; Table[a[n], {n,0,29}] (* Detlef Meya, Jun 22 2024 *)
Showing 1-3 of 3 results.
Comments