A097147 Total sum of minimum block sizes in all partitions of n-set.
1, 3, 7, 21, 66, 258, 1079, 4987, 25195, 136723, 789438, 4863268, 31693715, 217331845, 1564583770, 11795630861, 92833623206, 760811482322, 6479991883525, 57256139503047, 523919025038279, 4956976879724565, 48424420955966635, 487810283307069696
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576
Programs
-
Maple
g:= proc(n, i, p) option remember; `if`(n=0, (i+1)*p!, `if`(i<1, 0, add(g(n-i*j, i-1, p+j*i)/j!/i!^j, j=0..n/i))) end: a:= n-> g(n$2, 0): seq(a(n), n=1..30); # Alois P. Heinz, Mar 06 2015
-
Mathematica
Drop[Apply[Plus,Table[nn=25;Range[0,nn]!CoefficientList[Series[Exp[Sum[ x^i/i!,{i,n,nn}]]-1,{x,0,nn}],x],{n,1,nn}]],1] (* Geoffrey Critzer, Jan 10 2013 *) g[n_, i_, p_] := g[n, i, p] = If[n == 0, (i+1)*p!, If[i<1, 0, Sum[g[n-i*j, i-1, p+j*i]/j!/i!^j, {j, 0, n/i}]]]; a[n_] := g[n, n, 0]; Array[a, 30] (* Jean-François Alcover, Aug 24 2021, after Alois P. Heinz *)
Formula
E.g.f.: Sum_{k>0} (-1+exp(Sum_{j>=k} x^j/j!)).
Extensions
More terms from Max Alekseyev, Apr 29 2010