cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A097174 Total number of red nodes among tricolored labeled trees on n nodes.

Original entry on oeis.org

1, 0, 6, 12, 320, 2190, 51492, 685496, 17286768, 348213690, 9956411300, 266065478052, 8737396913544, 287741445880070, 10816320294520860, 420123621828718320, 17913098835916877792, 798053882730994171890, 38192029991097097185108, 1914946396460982552420380
Offset: 1

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[LambertW[-LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Aug 26 2016 *)
  • PARI
    x='x+O('x^50); Vec(serlaplace(lambertw(-lambertw(-x)))) \\ G. C. Greubel, Nov 15 2017

Formula

E.g.f.: A(x) = -T(-T(x)), with T(x) = Sum_{k>=1} A000169(k)/k!*x^k.
a(n) = -n^(n-1) * Sum_{j=1..n} (-j/n)^j*C(n, j).
a(n) ~ LambertW(1)*n^(n-1)/(1+LambertW(1)). - Vaclav Kotesovec, Aug 26 2016

A097170 Total number of minimal vertex covers among labeled trees on n nodes.

Original entry on oeis.org

1, 2, 3, 40, 185, 3936, 35917, 978160, 14301513, 464105440, 9648558161, 361181788584, 9884595572293, 419174374377136, 14317833123918885, 679698565575210976, 27884513269105178033, 1468696946887669701312
Offset: 1

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Maple
    umax := 20 : u := array(0..umax) : T := proc(z) local resul,n ; global umax,u ; resul :=0 ; for n from 1 to umax do resul := resul +n^(n-1)/n!*z^n ; od : RETURN(taylor(resul,x=0,umax+1)) ; end: U := proc() global umax,u ; local resul,n ; resul :=0 ; for n from 0 to umax do resul := resul+u[n]*x^n ; od: end: expU := proc() global umax,u ; taylor(exp(U()),x=0,umax+1) ; end: xUexpU := proc() global umax,u ; taylor(x*U()*expU(),x=0,umax+1) ; end: exexpU := proc() global umax,u ; taylor(exp(x*expU())-1,x=0,umax+1) ; end: x2e2U := taylor((x*expU())^2,x=0,umax+1) ; A := expand(taylor(xUexpU()-T(x2e2U)*exexpU(), x=0,umax+1)) ; for n from 0 to umax do u[n] := solve(coeff(A,x,n+1),u[n]) ; od ; F := proc() global umax,u ; taylor((1-U())*x*expU()-U()*T(x2e2U)+U()-U()^2/2,x=0,umax+1) ; end: egf := F() ; for n from 0 to umax-1 do n!*coeff(egf,x,n) ; od; # R. J. Mathar, Sep 14 2006
  • Mathematica
    uMax = 20; Clear[u]; u[0] = u[1] = 0; u[2] = 1;
    T[x_] := Sum[n^(n - 1)/n!*x^n , {n, 1, uMax}];
    U[] = Sum[u[n]*x^n, {n, 0, uMax}];
    ExpU[] = Series[Exp[U[]], {x, 0, uMax + 1}];
    xUExpU[] = Series[x*U[]*ExpU[], {x, 0, uMax + 1}];
    exExpU[] = Series[Exp[x*ExpU[]] - 1, {x, 0, uMax + 1}];
    x2e2U = Series[(x*ExpU[])^2, {x, 0, uMax + 1}];
    A = Series[xUExpU[] - T[x2e2U]*exExpU[], {x, 0, uMax + 1}] // CoefficientList[#, x]&;
    sol = Solve[Thread[A == 0]][[1]];
    egf = Series[(1 - U[])*x*ExpU[] - U[]*T[x2e2U] + U[] - U[]^2/2 /. sol, {x, 0, uMax + 1}];
    Most[CoefficientList[egf, x]]*Range[0, uMax]! // Rest (* Jean-François Alcover, Dec 11 2017, translated from Maple *)

Formula

Coulomb and Bauer give a g.f.

Extensions

More terms from R. J. Mathar, Sep 14 2006

A097172 Total number of brown nodes among tricolored labeled trees on n nodes.

Original entry on oeis.org

3, 4, 185, 1026, 30457, 362664, 10245825, 195060070, 5907674201, 153676400076, 5199628119985, 169205814335754, 6462995557999905, 249877775352089296, 10749867848389013249, 478345428286978038606, 23013713995857481324969
Offset: 3

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-LambertW[-x] - LambertW[-LambertW[-x]]- LambertW[-LambertW[-x]]^2, {x, 0, 20}], x] * Range[0, 20]!, 3] (* Vaclav Kotesovec, Aug 26 2016 *)

Formula

E.g.f.: A(x) = T(x)+T(-T(x))-T(-T(x))^2, with T(x)=Sum[k=1..inf, A000169(k)/k!*x^k].
a(n) = -n^(n-1) * {1 + Sum[l=1..n, (-l/n)^l*(2/l-1)*C(n, l)]}.
a(n) ~ (1-2*LambertW(1)^2)*n^(n-1)/(1+LambertW(1)). - Vaclav Kotesovec, Aug 26 2016

A097171 Number of maximal matchings among labeled trees on n nodes.

Original entry on oeis.org

1, 1, 6, 24, 320, 3270, 55482, 999656, 21718440, 544829130, 15130478990, 475440344412, 16294653237876, 613546243029902, 25016884214147490, 1100408748640263120, 51948228453097163312, 2617775548597611727506, 140364712844785892810646, 7975414423897012183673540
Offset: 1

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Maple
    umax := 20 ; u := array(0..umax) ; U := proc() global umax,u ; local resul,n ; resul :=0 ; for n from 0 to umax do resul := resul+u[n]*x^n ; od: end: expU := proc() global umax,u ; taylor(exp(U()),x=0,umax+1) ; end: xexpU := proc() global umax,u ; taylor(x*expU(),x=0,umax+1) ; end: exexpU := proc() global umax,u ; local t ; t := xexpU() ; taylor(exp(-t^2+t+3*U()),x=0,umax+1) ; end: A := expand(taylor(U()-x^2*exexpU(), x=0,umax+1)) ; for n from 0 to umax do u[n] := solve(coeff(A,x,n),u[n]) ; od : F := proc() t := xexpU() ; taylor(-(t+U())^2/2+(1+U()*t)*t+U()-U()^2,x=0,umax+1) ; end: egf := F() ; for n from 1 to umax do n!*coeff(egf,x,n) ; od; # R. J. Mathar, Sep 14 2006
  • Mathematica
    nmax = 20; egf := -U^2 - (1/2)*(E^U*x + U)^2 + E^U*x*(E^U*U*x + 1) + U;
    U = 1;
    Do[U = Normal[x^2*E^(E^(2U)*(-x^2) + E^U*x + 3U) + O[x]^n], {n, 1, nmax}];
    Rest[Range[0, nmax - 1]!*CoefficientList[egf + O[x]^nmax, x]] (* Jean-François Alcover, Dec 14 2017 *)

Formula

Coulomb and Bauer give a g.f.

Extensions

More terms from R. J. Mathar, Sep 14 2006

A115287 Decimal expansion of 1/(1+LambertW(1)).

Original entry on oeis.org

6, 3, 8, 1, 0, 3, 7, 4, 3, 3, 6, 5, 1, 1, 0, 7, 7, 8, 5, 2, 2, 4, 0, 7, 3, 8, 5, 5, 1, 9, 8, 8, 0, 3, 1, 4, 4, 4, 3, 9, 3, 3, 8, 4, 1, 2, 8, 9, 0, 2, 7, 6, 4, 0, 4, 1, 9, 4, 8, 3, 1, 9, 3, 6, 5, 0, 3, 4, 2, 1, 0, 1, 0, 5, 6, 7, 6, 0, 0, 8, 3, 0, 4, 1, 0, 0, 1, 8, 5, 2, 5, 1, 0, 5, 2, 7, 4, 8, 3, 3, 1, 5, 7, 0, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 19 2006

Keywords

Examples

			0.63810374336511077852...
		

Crossrefs

Programs

Formula

Equals Integral_{x=-oo..oo} 1/(Pi^2 + (exp(x)-x)^2) dx (discovered by Victor Adamchik). - Amiram Eldar, Jul 04 2021
Showing 1-5 of 5 results.