cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A097170 Total number of minimal vertex covers among labeled trees on n nodes.

Original entry on oeis.org

1, 2, 3, 40, 185, 3936, 35917, 978160, 14301513, 464105440, 9648558161, 361181788584, 9884595572293, 419174374377136, 14317833123918885, 679698565575210976, 27884513269105178033, 1468696946887669701312
Offset: 1

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Maple
    umax := 20 : u := array(0..umax) : T := proc(z) local resul,n ; global umax,u ; resul :=0 ; for n from 1 to umax do resul := resul +n^(n-1)/n!*z^n ; od : RETURN(taylor(resul,x=0,umax+1)) ; end: U := proc() global umax,u ; local resul,n ; resul :=0 ; for n from 0 to umax do resul := resul+u[n]*x^n ; od: end: expU := proc() global umax,u ; taylor(exp(U()),x=0,umax+1) ; end: xUexpU := proc() global umax,u ; taylor(x*U()*expU(),x=0,umax+1) ; end: exexpU := proc() global umax,u ; taylor(exp(x*expU())-1,x=0,umax+1) ; end: x2e2U := taylor((x*expU())^2,x=0,umax+1) ; A := expand(taylor(xUexpU()-T(x2e2U)*exexpU(), x=0,umax+1)) ; for n from 0 to umax do u[n] := solve(coeff(A,x,n+1),u[n]) ; od ; F := proc() global umax,u ; taylor((1-U())*x*expU()-U()*T(x2e2U)+U()-U()^2/2,x=0,umax+1) ; end: egf := F() ; for n from 0 to umax-1 do n!*coeff(egf,x,n) ; od; # R. J. Mathar, Sep 14 2006
  • Mathematica
    uMax = 20; Clear[u]; u[0] = u[1] = 0; u[2] = 1;
    T[x_] := Sum[n^(n - 1)/n!*x^n , {n, 1, uMax}];
    U[] = Sum[u[n]*x^n, {n, 0, uMax}];
    ExpU[] = Series[Exp[U[]], {x, 0, uMax + 1}];
    xUExpU[] = Series[x*U[]*ExpU[], {x, 0, uMax + 1}];
    exExpU[] = Series[Exp[x*ExpU[]] - 1, {x, 0, uMax + 1}];
    x2e2U = Series[(x*ExpU[])^2, {x, 0, uMax + 1}];
    A = Series[xUExpU[] - T[x2e2U]*exExpU[], {x, 0, uMax + 1}] // CoefficientList[#, x]&;
    sol = Solve[Thread[A == 0]][[1]];
    egf = Series[(1 - U[])*x*ExpU[] - U[]*T[x2e2U] + U[] - U[]^2/2 /. sol, {x, 0, uMax + 1}];
    Most[CoefficientList[egf, x]]*Range[0, uMax]! // Rest (* Jean-François Alcover, Dec 11 2017, translated from Maple *)

Formula

Coulomb and Bauer give a g.f.

Extensions

More terms from R. J. Mathar, Sep 14 2006

A097172 Total number of brown nodes among tricolored labeled trees on n nodes.

Original entry on oeis.org

3, 4, 185, 1026, 30457, 362664, 10245825, 195060070, 5907674201, 153676400076, 5199628119985, 169205814335754, 6462995557999905, 249877775352089296, 10749867848389013249, 478345428286978038606, 23013713995857481324969
Offset: 3

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[CoefficientList[Series[-LambertW[-x] - LambertW[-LambertW[-x]]- LambertW[-LambertW[-x]]^2, {x, 0, 20}], x] * Range[0, 20]!, 3] (* Vaclav Kotesovec, Aug 26 2016 *)

Formula

E.g.f.: A(x) = T(x)+T(-T(x))-T(-T(x))^2, with T(x)=Sum[k=1..inf, A000169(k)/k!*x^k].
a(n) = -n^(n-1) * {1 + Sum[l=1..n, (-l/n)^l*(2/l-1)*C(n, l)]}.
a(n) ~ (1-2*LambertW(1)^2)*n^(n-1)/(1+LambertW(1)). - Vaclav Kotesovec, Aug 26 2016

A097173 Total number of green nodes among tricolored labeled trees on n nodes.

Original entry on oeis.org

0, 2, 0, 48, 120, 4560, 35700, 1048992, 15514128, 456726240, 10073339100, 323266492560, 9361060088952, 336767513038320, 11913610172869860, 482920107426039360, 19998225191360977440, 909512248720724321472
Offset: 1

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[LambertW[-LambertW[-x]]^2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Aug 26 2016 *)

Formula

E.g.f.: A(x) = T(-T(x))^2, with T(x)=Sum[k=1..inf, A000169(k)/k!*x^k].
a(n) = -2 * n^(n-1) * Sum[l=1..n, (-l/n)^l*(1/l-1)*C(n, l)].
a(n) ~ 2*LambertW(1)^2*n^(n-1)/(1+LambertW(1)). - Vaclav Kotesovec, Aug 26 2016

A097171 Number of maximal matchings among labeled trees on n nodes.

Original entry on oeis.org

1, 1, 6, 24, 320, 3270, 55482, 999656, 21718440, 544829130, 15130478990, 475440344412, 16294653237876, 613546243029902, 25016884214147490, 1100408748640263120, 51948228453097163312, 2617775548597611727506, 140364712844785892810646, 7975414423897012183673540
Offset: 1

Views

Author

Ralf Stephan, Jul 30 2004

Keywords

Crossrefs

Programs

  • Maple
    umax := 20 ; u := array(0..umax) ; U := proc() global umax,u ; local resul,n ; resul :=0 ; for n from 0 to umax do resul := resul+u[n]*x^n ; od: end: expU := proc() global umax,u ; taylor(exp(U()),x=0,umax+1) ; end: xexpU := proc() global umax,u ; taylor(x*expU(),x=0,umax+1) ; end: exexpU := proc() global umax,u ; local t ; t := xexpU() ; taylor(exp(-t^2+t+3*U()),x=0,umax+1) ; end: A := expand(taylor(U()-x^2*exexpU(), x=0,umax+1)) ; for n from 0 to umax do u[n] := solve(coeff(A,x,n),u[n]) ; od : F := proc() t := xexpU() ; taylor(-(t+U())^2/2+(1+U()*t)*t+U()-U()^2,x=0,umax+1) ; end: egf := F() ; for n from 1 to umax do n!*coeff(egf,x,n) ; od; # R. J. Mathar, Sep 14 2006
  • Mathematica
    nmax = 20; egf := -U^2 - (1/2)*(E^U*x + U)^2 + E^U*x*(E^U*U*x + 1) + U;
    U = 1;
    Do[U = Normal[x^2*E^(E^(2U)*(-x^2) + E^U*x + 3U) + O[x]^n], {n, 1, nmax}];
    Rest[Range[0, nmax - 1]!*CoefficientList[egf + O[x]^nmax, x]] (* Jean-François Alcover, Dec 14 2017 *)

Formula

Coulomb and Bauer give a g.f.

Extensions

More terms from R. J. Mathar, Sep 14 2006

A276231 E.g.f. A(x) satisfies: A(x)^A(x) = LambertW(-x)/(-x).

Original entry on oeis.org

1, 1, 1, 7, 37, 441, 4771, 79213, 1320649, 28318321, 636978151, 16863972621, 475580960317, 15055752973561, 508984025190187, 18802677669334861, 739723172361876241, 31282037176343362785, 1402437758091393319759, 66859536126516402568717, 3362832363918613596662341, 178500985406930615357763241, 9950984335825184802962609491, 582129154096893229447821411597, 35620632904151979409688095495897, 2277073896917989779381561818509201
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2016

Keywords

Comments

Let G(x) = (-x)/LambertW(-x), then A(x)^A(x) = 1/G(x) where G(x)^G(x) = 1/exp(x).
a(n) = 0 (mod 3) when n = 6*k+5, k>=0, otherwise a(n) = 1 (mod 3).

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 7*x^3/3! + 37*x^4/4! + 441*x^5/5! + 4771*x^6/6! + 79213*x^7/7! + 1320649*x^8/8! + 28318321*x^9/9! + 636978151*x^10/10! + 16863972621*x^11/11! + 475580960317*x^12/12! +...
such that A(x)^A(x) = LambertW(-x)/(-x), where
LambertW(-x)/(-x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! +...+ (n+1)^(n-1)*x^n/n! +...
The logarithm of the e.g.f. A(x) begins
log(A(x)) = x + 6*x^3/3! + 12*x^4/4! + 320*x^5/5! + 2190*x^6/6! + 51492*x^7/7! + 685496*x^8/8! + 17286768*x^9 +...+ A097174(n)*x^n/n! +...
which equals -T(-T(x)), where
T(x) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! + 2097152*x^8/8! +...+ n^(n-1)*x^n/n! +...
		

Crossrefs

Cf. A097174 (log(A(x))).

Programs

  • Mathematica
    CoefficientList[Series[E^LambertW[-LambertW[-x]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 26 2016 *)
  • PARI
    {a(n) = my(A=1+x, W); W=serreverse(x*exp(-x +x^2*O(x^n)))/x;
    for(i=0,n, A = W^(1/A) ); n!*polcoeff(A,n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

E.g.f.: exp( -T(-T(x)) ), where T(x) = Sum_{n>=1} n^(n-1)*x^n/n!.
a(n) ~ n^(n-1)/(1+LambertW(1)). - Vaclav Kotesovec, Aug 26 2016

A115287 Decimal expansion of 1/(1+LambertW(1)).

Original entry on oeis.org

6, 3, 8, 1, 0, 3, 7, 4, 3, 3, 6, 5, 1, 1, 0, 7, 7, 8, 5, 2, 2, 4, 0, 7, 3, 8, 5, 5, 1, 9, 8, 8, 0, 3, 1, 4, 4, 4, 3, 9, 3, 3, 8, 4, 1, 2, 8, 9, 0, 2, 7, 6, 4, 0, 4, 1, 9, 4, 8, 3, 1, 9, 3, 6, 5, 0, 3, 4, 2, 1, 0, 1, 0, 5, 6, 7, 6, 0, 0, 8, 3, 0, 4, 1, 0, 0, 1, 8, 5, 2, 5, 1, 0, 5, 2, 7, 4, 8, 3, 3, 1, 5, 7, 0, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 19 2006

Keywords

Examples

			0.63810374336511077852...
		

Crossrefs

Programs

Formula

Equals Integral_{x=-oo..oo} 1/(Pi^2 + (exp(x)-x)^2) dx (discovered by Victor Adamchik). - Amiram Eldar, Jul 04 2021

A340473 a(n) = n! [x^n] W(-W(x))/(-W(x)), where W(x) is the Lambert W function.

Original entry on oeis.org

1, 1, 1, 7, 13, 321, 31, 42673, -214983, 12251809, -156239909, 6366130761, -135725103227, 5265915854785, -155145910919817, 6318044844152161, -232403136941014799, 10299509100942804033, -446889500139353805773, 21789892230658085847673, -1078684347590588362463619
Offset: 0

Views

Author

Peter Luschny, Jan 08 2021

Keywords

Comments

Let LW(x) = W(-W(x))/(-W(x)) denote the function in the definition and let T(x) = -W(-x) be Euler's tree function A000169, and L(x) = W(-x)/(-x) the labeled tree function A000272, then LW(x) = L(W(x)), and TW(x) := -T(W(-x)) is A097174, and RW(x) := T(-W(-x)) is A207833.

Crossrefs

Programs

  • Maple
    W := x -> LambertW(x): gf := W(-W(x))/(-W(x)):
    ser := series(gf, x, 24): seq(n!*coeff(ser, x, n), n=0..20);
  • Mathematica
    gf := -ProductLog[-ProductLog[x]]/ProductLog[x];
    Range[0, 20]! CoefficientList[Series[gf, {x, 0, 20}], x]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(lambertw(-lambertw(x))/(-lambertw(x)))) \\ Michel Marcus, Jan 09 2021

A340474 a(n) = n! [x^n] LW(T(x)), where T(x) = -W(-x) Euler's tree function, W(x) is the Lambert W function, and LW(x) = W(-W(x))/(-W(x)) (A340473).

Original entry on oeis.org

1, 1, 3, 22, 209, 2756, 43717, 839686, 18581425, 470707192, 13352676101, 420875581754, 14566375690297, 549877190829604, 22472783629465093, 989043215802778966, 46631075599107558113, 2345376059569552767344, 125350843842721213505029, 7095169059445749303612946
Offset: 0

Views

Author

Peter Luschny, Jan 09 2021

Keywords

Crossrefs

Programs

  • Maple
    W := x -> LambertW(x): T := x -> -W(-x): LW := x -> W(-W(x))/(-W(x)):
    ser := series(LW(T(x)), x, 24): seq(n!*coeff(ser, x, n), n=0..19);
Showing 1-8 of 8 results.