A097184 G.f. A(x) satisfies A097182(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097181.
1, 7, 70, 805, 9982, 129766, 1742572, 23960365, 335445110, 4763320562, 68418604436, 992069764322, 14499481170860, 213349508656940, 3157572728122712, 46968894330825341, 701770538825272742, 10526558082379091130, 158452400608443161220
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-(1-16*x)^(1/8))/(2*x) )); // G. C. Greubel, Sep 17 2019 -
Maple
seq(coeff(series((1-(1-16*x)^(1/8))/(2*x), x, n+2), x, n), n = 0..20); # G. C. Greubel, Sep 17 2019
-
Mathematica
CoefficientList[Series[(1-(1-16*x)^(1/8))/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *) Table[FullSimplify[16^n*Gamma[n+7/8]/(Gamma[7/8]*Gamma[n+2])], {n, 0, 20}] (* Vaclav Kotesovec, Feb 09 2014 *)
-
PARI
a(n)=polcoeff((1-(1-16*x+x^2*O(x^n))^(1/8))/(2*x),n,x)
-
Sage
def A097184_list(prec): P.
= PowerSeriesRing(QQ, prec) return P((1-(1-16*x)^(1/8))/(2*x)).list() A097184_list(20) # G. C. Greubel, Sep 17 2019
Formula
G.f.: A(x) = (1-(1-16*x)^(1/8))/(2*x).
G.f.: A(x) = (1/x)*(series reversion of x/A097182(x)).
a(n) = A097183(n)/(n+1).
D-finite with recurrence: (n+1)*a(n) +2*(-8*n+1)*a(n-1)=0. - R. J. Mathar, Nov 16 2012
a(n) = 16^n * Gamma(n+7/8) / (Gamma(7/8) * Gamma(n+2)). - Vaclav Kotesovec, Feb 09 2014
a(n) ~ 16^n / (Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Feb 09 2014
Extensions
More terms from Vincenzo Librandi, Feb 10 2014