cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097184 G.f. A(x) satisfies A097182(x*A(x)) = A(x) and so equals the ratio of the g.f.s of any two adjacent diagonals of triangle A097181.

Original entry on oeis.org

1, 7, 70, 805, 9982, 129766, 1742572, 23960365, 335445110, 4763320562, 68418604436, 992069764322, 14499481170860, 213349508656940, 3157572728122712, 46968894330825341, 701770538825272742, 10526558082379091130, 158452400608443161220
Offset: 0

Views

Author

Paul D. Hanna, Aug 03 2004

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 20); Coefficients(R!( (1-(1-16*x)^(1/8))/(2*x) )); // G. C. Greubel, Sep 17 2019
    
  • Maple
    seq(coeff(series((1-(1-16*x)^(1/8))/(2*x), x, n+2), x, n), n = 0..20); # G. C. Greubel, Sep 17 2019
  • Mathematica
    CoefficientList[Series[(1-(1-16*x)^(1/8))/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2014 *)
    Table[FullSimplify[16^n*Gamma[n+7/8]/(Gamma[7/8]*Gamma[n+2])], {n, 0, 20}] (* Vaclav Kotesovec, Feb 09 2014 *)
  • PARI
    a(n)=polcoeff((1-(1-16*x+x^2*O(x^n))^(1/8))/(2*x),n,x)
    
  • Sage
    def A097184_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P((1-(1-16*x)^(1/8))/(2*x)).list()
    A097184_list(20) # G. C. Greubel, Sep 17 2019

Formula

G.f.: A(x) = (1-(1-16*x)^(1/8))/(2*x).
G.f.: A(x) = (1/x)*(series reversion of x/A097182(x)).
a(n) = A097183(n)/(n+1).
D-finite with recurrence: (n+1)*a(n) +2*(-8*n+1)*a(n-1)=0. - R. J. Mathar, Nov 16 2012
a(n) = 16^n * Gamma(n+7/8) / (Gamma(7/8) * Gamma(n+2)). - Vaclav Kotesovec, Feb 09 2014
a(n) ~ 16^n / (Gamma(7/8) * n^(9/8)). - Vaclav Kotesovec, Feb 09 2014

Extensions

More terms from Vincenzo Librandi, Feb 10 2014