cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097242 Expansion of q-series 1 / (q^2, q^3, q^9, q^10; q^12)_infinity.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 6, 7, 7, 8, 11, 10, 13, 15, 16, 18, 23, 22, 27, 31, 33, 37, 45, 45, 53, 60, 64, 71, 84, 86, 99, 111, 119, 131, 151, 157, 178, 198, 212, 233, 264, 277, 310, 342, 367, 401, 449, 474, 525, 576, 618, 673, 746, 790, 869, 949, 1017, 1104
Offset: 0

Views

Author

Michael Somos, Aug 02 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of n into odd parts in which every part occurs at least twice. Example: a(9)=3 because we have [3,3,3], [3,3,1,1,1] and [1,1,1,1,1,1,1,1,1]. - Vladeta Jovovic, Jan 16 2005
Also equal to the number of partitions of n into distinct parts not congruent to 1 or 5 modulo 6. Example: a(9) = 3, the relevant partitions being [9], [6,3], and [4,3,2]. - Jeremy Lovejoy, Jun 21 2020
From Joerg Arndt, Jun 21 2020: (Start)
a(n) is the number of partitions with parts == { 2, 3, 9, 10 } (mod 12).
a(n) is the number of overpartitions with non-overlined parts == 2 (mod 4) and overlined parts == 3 (mod 6); same as the number of partitions with parts == 2 (mod 4) and distinct parts == 3 (mod 6). (End)

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 3*x^9 + 3*x^10 + 3*x^11 + ...
G.f. = 1/q + q^47 + q^71 + q^95 + q^119 + 2*q^143 + q^167 + 2*q^191 + 3*q^215 + ...
		

Crossrefs

Cf. A053993.

Programs

  • Maple
    g:=product(1+x^(4*j-2)/(1-x^(2*j-1)),j=1..20): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..65); # Emeric Deutsch, Feb 23 2006
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/((1 - x^(12*k + 2)) * (1 - x^(12*k + 3)) * (1 - x^(12*k + 9)) * (1 - x^(12*k + 10))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] QPochhammer[ -x^3, x^6], {x, 0, n}]; (* Michael Somos, Jan 09 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - x^k * [0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0][(k-1)%12 + 1], 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))}; /* Michael Somos, Oct 17 2006 */

Formula

G.f.: Product_{k>0} (1 + x^(6*k - 3)) / (1 - x^(4*k - 2)).
G.f.: 1 / (Product_{k>=0} (1 - x^(12*k + 2)) * (1 - x^(12*k + 3)) * (1 - x^(12*k + 9)) * (1 - x^(12*k + 10))).
Expansion of chi(x^3) / chi(-x^2) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Oct 17 2006
Expansion of q^(1/24) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, ...].
a(n) ~ Pi*BesselI(1, sqrt(24*n-1)*Pi/(6*sqrt(3))) / sqrt(3*(24*n-1)/2) ~ exp(Pi*sqrt(2*n)/3) / (2^(7/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/72)/sqrt(2*n) + (5/128 - 135/(256*Pi^2) + Pi^2/20736)/n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017