cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053993 The number phi_2(n) of Frobenius partitions that allow up to 2 repetitions of an integer in a row.

Original entry on oeis.org

1, 1, 3, 5, 9, 14, 24, 35, 55, 81, 120, 171, 248, 345, 486, 669, 920, 1246, 1690, 2256, 3014, 3984, 5253, 6870, 8970, 11618, 15022, 19306, 24745, 31557, 40154, 50845, 64244, 80850, 101501, 126982, 158514, 197218, 244865, 303143, 374497, 461435
Offset: 0

Views

Author

James Sellers, Apr 04 2000

Keywords

Comments

Sum of products of multiplicities of odd parts in all partitions of n (if there are no odd parts in a partition then product of multiplicities is considered to be 1). - Vladeta Jovovic, Feb 16 2005
The sequence A077285 is the same but with multiplicities of all parts.

Examples

			1 + x + 3*x^2 + 5*x^3 + 9*x^4 + 14*x^5 + 24*x^6 + 35*x^7 + 55*x^8 + ...
q^-1 + q^11 + 3*q^23 + 5*q^35 + 9*q^47 + 14*q^59 + 24*q^71 + 35*q^83 + ...
a(6) = 24 since the 5 partitions 6 = 5+1 = 4+2 = 3+2+1 = 2+2+2 each contribute 1, the 3 partitions 4+1+1 = 3+3 = 2+2+1+1 each contribute 2, the partition 3+1+1+1 contributes 3, the partition 2+1+1+1+1 contributes 4, and the partition 1+1+1+1+1+1 contributes 6 to give total 24 = 5*1 + 3*2 + 1*3 + 1*4 + 1*6. - _Michael Somos_, Mar 09 2011
		

References

  • George E. Andrews, Generalized Frobenius partitions, Memoirs of the American Mathematical Society, Number 301, May 1984.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)
          +add(b(n-i*j, i-1)*`if`(irem(i, 2)=1, j, 1), j=1..n/i)))
        end:
    a:= n-> b(n, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 16 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-1] * If[Mod[i, 2] == 1, j, 1], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
    QP = QPochhammer; s = QP[q^4] * (QP[q^6]^2 / (QP[q] * QP[q^2] * QP[q^3] * QP[q^12])) + O[q]^50; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))} /* Michael Somos, Mar 09 2011 */

Formula

Expansion of q^(1/12) * eta(q^4) * eta(q^6)^2 / (eta(q) * eta(q^2) * eta(q^3) * eta(q^12)) in powers of q. - Michael Somos, Mar 09 2011
Euler transform of period 12 sequence [ 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, ...]. - Michael Somos, Mar 09 2011
G.f.: (Product_{k>0} (1 - x^k) * (1 - x^(12*k - 10)) * (1 - x^(12*k - 9)) * (1 - x^(12*k - 3)) * (1 - x^(12*k - 2)))^(-1). [Andrews, p. 10, equation (5.9)]
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (6*sqrt(2)*n). - Vaclav Kotesovec, Nov 28 2015

A328789 Expansion of (chi(x^3) / chi(-x^2))^2 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 2, 2, 3, 4, 7, 6, 11, 14, 17, 22, 32, 34, 49, 60, 72, 90, 117, 132, 171, 206, 245, 298, 369, 422, 522, 620, 728, 868, 1043, 1198, 1439, 1688, 1962, 2304, 2717, 3114, 3668, 4258, 4909, 5698, 6627, 7566, 8788, 10112, 11574, 13310, 15317, 17410, 20010
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square of A097242.
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 1/2 g(t) where q = exp(2 Pi i t) and g() is g.f. for A328795.

Examples

			G.f. = 1 + 2*x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 6*x^7 + 11*x^8 + ...
G.f. = q^-1 + 2*q^23 + 2*q^35 + 3*q^47 + 4*q^59 + 7*q^71 + 6*q^83 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^2, x^2] QPochhammer[ -x^3, x^6])^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^6 + A)^2)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))};

Formula

Expansion of q^(1/12) * (eta(q^4) * eta(q^6)^2)^2 / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.
Euler transform of period 12 sequence [0, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, ...].
G.f.: Product_{k>=1} (1 + x^(6*k - 3))^2 / (1 - x^(4*k - 2))^2.
a(n) = A112206(2*n).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (4*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019

A328800 Expansion of chi(-x) * chi(x^3) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 2, -2, 0, 0, 1, -2, 0, 0, 2, -2, 0, 0, 3, -3, 0, 0, 3, -3, 0, 0, 3, -3, 0, 0, 5, -5, 0, 0, 4, -5, 0, 0, 6, -5, 0, 0, 7, -7, 0, 0, 7, -8, 0, 0, 8, -8, 0, 0, 11, -11, 0, 0, 10, -12, 0
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A328797.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A328796.

Examples

			G.f. = 1 - x - x^5 + x^8 + x^12 - x^13 + x^16 - x^17 + x^20 + ...
G.f. = q^-1 - q^5 - q^29 + q^47 + q^71 - q^77 + q^95 - q^101 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^3, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^2) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))};

Formula

Expansion of q^(1/6) * (eta(q) * eta(q^6)^2) / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [-1, 0, 0, 0, -1, -1, -1, 0, 0, 0, -1, 0, ...].
G.f.: Product_{k>=1} (1 - x^(2*k-1)) * (1 + x^(6*k-3)).
a(n) = (-1)^n * A328802. a(4*n) = A097242(n). a(4*n + 1) = -A328796(n). a(4*n + 2) = a(4*n + 3) = 0.

A116664 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts and having exactly k parts that appear exactly once (n>=0, k>=0).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 4, 0, 2, 2, 2, 3, 4, 0, 1, 3, 4, 3, 0, 3, 7, 1, 1, 5, 4, 6, 0, 4, 10, 2, 2, 6, 7, 9, 0, 7, 12, 5, 3, 7, 13, 11, 0, 1, 8, 18, 7, 5, 0, 11, 15, 18, 1, 1, 10, 25, 11, 8, 0, 13, 23, 24, 2, 2, 15, 32, 16, 13, 0, 16, 33, 32, 5, 3, 18, 43, 24, 19, 0, 23, 40
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

Row n contains 1+floor(sqrt(n)) terms (at the end of certain rows there is an extra 0). Row sums yield A000009. T(n,0)=A097242(n). Sum(k*T(n,k), k>=0)=A116665(n).

Examples

			T(10,2) = 3 because the only partitions of 10 into odd parts and having exactly 2 parts that appear only once are [9,1],[7,3] and [5,3,1,1].
Triangle starts:
1;
0, 1;
1, 0;
1, 1;
1, 0, 1;
1, 2, 0;
2, 1, 1;
1, 4, 0;
		

Crossrefs

Programs

  • Maple
    g:=product(1+t*x^(2*j-1)+x^(2*(2*j-1))/(1-x^(2*j-1)),j=1..30): gser:=simplify(series(g,x=0,30)): P[0]:=1: for n from 1 to 25 do P[n]:=coeff(gser,x^n) od: for n from 0 to 25 do seq(coeff(P[n],t,j),j=0..floor(sqrt(n))) od; # yields sequence in triangular form, with one extra 0 in some rows
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           expand(add(b(n-i*j, i-2)*`if`(j=1, x, 1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, k), k=0..floor(sqrt(n))))
            (b(n, n-irem(n+1, 2))):
    seq(T(n), n=0..25);  # Alois P. Heinz, Mar 16 2014
  • Mathematica
    b[n_, i_] :=  b[n, i] = If[n == 0, 1, If[i<1, 0, Expand[Sum[b[n-i*j, i-2]*If[j == 1, x, 1], {j, 0, n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, Floor[Sqrt[n]]}]][b[n, n-Mod[n+1, 2]]]; Table[T[n], {n, 0, 25}] // Flatten (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)

Formula

G.f.: product(1+tx^(2j-1)+x^(4j-2)/(1-x^(2j-1)), j=1..infinity).

A328802 Expansion of chi(x) * chi(-x^3) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 2, 2, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 5, 5, 0, 0, 4, 5, 0, 0, 6, 5, 0, 0, 7, 7, 0, 0, 7, 8, 0, 0, 8, 8, 0, 0, 11, 11, 0, 0, 10, 12, 0, 0, 13, 12, 0, 0, 15
Offset: 0

Views

Author

Michael Somos, Oct 28 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A328795.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = 2^(1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A097242.

Examples

			G.f. = 1 + x + x^5 + x^8 + x^12 + x^13 + x^16 + x^17 + x^20 + ...
G.f. = q^-1 + q^5 + q^29 + q^47 + q^71 + q^77 + q^95 + q^101 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^3, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^3 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(1/6) * (eta(q^2)^2 * eta(q^3)) / (eta(q) * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [1, -1, 0, 0, 1, -1, 1, 0, 0, -1, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^(2*k-1)) * (1 - x^(6*k-3)).
a(n) = (-1)^n * A328800. a(4*n) = A097242(n). a(4*n + 1) = A328796(n). a(4*n + 2) = a(4*n + 3) = 0.
Showing 1-5 of 5 results.