cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A227551 Number T(n,k) of partitions of n into distinct parts with boundary size k; triangle T(n,k), n>=0, 0<=k<=A227568(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 3, 1, 0, 1, 3, 2, 0, 1, 5, 2, 0, 1, 5, 4, 0, 1, 5, 6, 0, 1, 6, 7, 1, 0, 1, 6, 10, 1, 0, 1, 7, 11, 3, 0, 1, 9, 13, 4, 0, 1, 7, 18, 6, 0, 1, 8, 20, 9, 0, 1, 10, 21, 14, 0, 1, 9, 27, 16, 1, 0, 1, 10, 29, 22, 2
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having fewer than two neighbors.

Examples

			T(12,1) = 1: [12].
T(12,2) = 6: [1,11], [2,10], [3,4,5], [3,9], [4,8], [5,7].
T(12,3) = 7: [1,2,3,6], [1,2,9], [1,3,8], [1,4,7], [1,5,6], [2,3,7], [2,4,6].
T(12,4) = 1: [1,2,4,5].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1;
  0, 1, 1;
  0, 1, 1;
  0, 1, 2;
  0, 1, 3;
  0, 1, 3, 1;
  0, 1, 3, 2;
  0, 1, 5, 2;
  0, 1, 5, 4;
  0, 1, 5, 6;
  0, 1, 6, 7, 1;
		

Crossrefs

Row sums give: A000009.
Last elements of rows give: A227552.
Cf. A227345 (a version with trailing zeros), A053993, A201077, A227568, A224878 (one part of size 0 allowed).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
          expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    T:= n-> (p->seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0)):
    seq(T(n), n=0..30);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, If[t > 1, x, 1], Expand[If[i < 1, 0, If[t > 1, x, 1]*b[n, i - 1, Quotient[t, 2]] + If[i > n, 0, If[t == 2, x, 1]*b[n - i, i - 1, Quotient[t, 2] + 2]]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 30}] // Flatten (* Jean-François Alcover, Dec 12 2016, after Alois P. Heinz *)

A097242 Expansion of q-series 1 / (q^2, q^3, q^9, q^10; q^12)_infinity.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 3, 3, 5, 4, 6, 7, 7, 8, 11, 10, 13, 15, 16, 18, 23, 22, 27, 31, 33, 37, 45, 45, 53, 60, 64, 71, 84, 86, 99, 111, 119, 131, 151, 157, 178, 198, 212, 233, 264, 277, 310, 342, 367, 401, 449, 474, 525, 576, 618, 673, 746, 790, 869, 949, 1017, 1104
Offset: 0

Views

Author

Michael Somos, Aug 02 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of partitions of n into odd parts in which every part occurs at least twice. Example: a(9)=3 because we have [3,3,3], [3,3,1,1,1] and [1,1,1,1,1,1,1,1,1]. - Vladeta Jovovic, Jan 16 2005
Also equal to the number of partitions of n into distinct parts not congruent to 1 or 5 modulo 6. Example: a(9) = 3, the relevant partitions being [9], [6,3], and [4,3,2]. - Jeremy Lovejoy, Jun 21 2020
From Joerg Arndt, Jun 21 2020: (Start)
a(n) is the number of partitions with parts == { 2, 3, 9, 10 } (mod 12).
a(n) is the number of overpartitions with non-overlined parts == 2 (mod 4) and overlined parts == 3 (mod 6); same as the number of partitions with parts == 2 (mod 4) and distinct parts == 3 (mod 6). (End)

Examples

			G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 3*x^9 + 3*x^10 + 3*x^11 + ...
G.f. = 1/q + q^47 + q^71 + q^95 + q^119 + 2*q^143 + q^167 + 2*q^191 + 3*q^215 + ...
		

Crossrefs

Cf. A053993.

Programs

  • Maple
    g:=product(1+x^(4*j-2)/(1-x^(2*j-1)),j=1..20): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..65); # Emeric Deutsch, Feb 23 2006
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/((1 - x^(12*k + 2)) * (1 - x^(12*k + 3)) * (1 - x^(12*k + 9)) * (1 - x^(12*k + 10))), {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] QPochhammer[ -x^3, x^6], {x, 0, n}]; (* Michael Somos, Jan 09 2017 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - x^k * [0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0][(k-1)%12 + 1], 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A)), n))}; /* Michael Somos, Oct 17 2006 */

Formula

G.f.: Product_{k>0} (1 + x^(6*k - 3)) / (1 - x^(4*k - 2)).
G.f.: 1 / (Product_{k>=0} (1 - x^(12*k + 2)) * (1 - x^(12*k + 3)) * (1 - x^(12*k + 9)) * (1 - x^(12*k + 10))).
Expansion of chi(x^3) / chi(-x^2) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Oct 17 2006
Expansion of q^(1/24) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, ...].
a(n) ~ Pi*BesselI(1, sqrt(24*n-1)*Pi/(6*sqrt(3))) / sqrt(3*(24*n-1)/2) ~ exp(Pi*sqrt(2*n)/3) / (2^(7/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/72)/sqrt(2*n) + (5/128 - 135/(256*Pi^2) + Pi^2/20736)/n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 09 2017

A186084 Triangle T(n,k) read by rows: number of 1-dimensional sandpiles (see A186085) with n grains and base length k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 5, 1, 0, 0, 0, 0, 1, 4, 10, 6, 1, 0, 0, 0, 0, 0, 3, 10, 15, 7, 1, 0, 0, 0, 0, 0, 2, 8, 20, 21, 8, 1, 0, 0, 0, 0, 0, 1, 7, 19, 35, 28, 9, 1, 0, 0, 0, 0, 0, 0, 5, 18, 40, 56, 36, 10, 1, 0, 0, 0, 0, 0, 0, 3, 16, 41, 76, 84, 45, 11, 1, 0, 0, 0, 0, 0, 0, 1, 12, 41, 86, 133, 120, 55, 12, 1
Offset: 0

Views

Author

Joerg Arndt, Feb 13 2011

Keywords

Comments

Compositions of n into k nonzero parts such that the first and last parts are 1 and the absolute difference between consecutive parts is <=1.
Row sums are A186085.
Column sums are the Motzkin numbers (A001006).
First nonzero entry in row n appears in column A055086(n).
From Joerg Arndt, Nov 06 2012: (Start)
The transposed triangle (with zeros omitted) is A129181.
For large k, the columns end in reverse([1, 1, 3, 5, 9, 14, 24, 35, ...]) for k even (cf. A053993) and reverse([1, 2, 3, 6, 10, 16, 26, 40, 60, 90, ...]) for k odd (cf. A201077).
The diagonals below the main diagonal are (apart from leading zeros), n, n*(n+1)/2, n*(n+1)*(n+2)/6, and the e-th diagonal appears to have a g.f. of the form f(x)/(1-x)^e.
(End)

Examples

			Triangle begins:
1;
0,1;
0,0,1;
0,0,1,1;
0,0,0,2,1;
0,0,0,1,3,1;
0,0,0,0,3,4,1;
0,0,0,0,1,6,5,1;
0,0,0,0,1,4,10,6,1;
0,0,0,0,0,3,10,15,7,1;
0,0,0,0,0,2,8,20,21,8,1;
0,0,0,0,0,1,7,19,35,28,9,1;
		

Crossrefs

Cf. A186085 (sandpiles with n grains, row sums), A001006 (Motzkin numbers, column sums), A055086.
Cf. A186505 (antidiagonal sums).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0),
          `if`(n<0 or i<1, 0, expand(x*add(b(n-i, i+j), j=-1..1)) ))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
    seq(T(n), n=0..20);  # Alois P. Heinz, Jul 24 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, Expand[ x*Sum[b[n-i, i+j], {j, -1, 1}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
  • PARI
    {T(n,k)=local(A=1+x*y);for(i=1,n,A=1/(1-x*y-x^3*y^2*subst(A,y,x*y+x*O(x^n))));polcoeff(polcoeff(A,n,x),k,y)}
    /* Paul D. Hanna */

Formula

G.f. A(x,y) satisfies: A(x,y) = 1/(1 - x*y - x^3*y^2*A(x, x*y) ). [Paul D. Hanna, Feb 22 2011]
G.f.: (formatting to make the structure apparent)
A(x,y) = 1 /
(1 - x^1*y / (1 - x^2*y / (1 - x^5*y^2 /
(1 - x^3*y / (1 - x^4*y / (1 - x^9*y^2 /
(1 - x^5*y / (1 - x^6*y / (1 - x^13*y^2 /
(1 - x^7*y / (1 - x^8*y / (1 - x^17*y^2 / (1 -...)))))))))))))
(continued fraction). [Paul D. Hanna]
G.f.: A(x,y) = 1/(1-x*y - x^3*y^2/(1-x^2*y - x^5*y^2/(1-x^3*y - x^7*y^2/(1 -...)))) (continued fraction). [Paul D. Hanna]

A227552 Number of partitions of n into distinct parts with maximal boundary size.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 2, 2, 4, 6, 1, 1, 3, 4, 6, 9, 14, 1, 2, 3, 5, 8, 11, 17, 24, 1, 1, 3, 5, 8, 11, 18, 24, 35, 49, 1, 2, 3, 6, 9, 14, 21, 30, 42, 60, 81, 1, 1, 3, 5, 9, 13, 21, 29, 43, 60, 84, 113, 156, 1, 2, 3, 6, 10, 15, 24, 35, 50, 71, 99, 134, 184, 246
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2013

Keywords

Comments

The boundary size is the number of parts having less than two neighbors.

Crossrefs

Last elements of rows of A227551.
Last nonzero elements of rows of A227345.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>1, x, 1),
          expand(`if`(i<1, 0, `if`(t>1, x, 1)*b(n, i-1, iquo(t, 2))+
          `if`(i>n, 0, `if`(t=2, x, 1)*b(n-i, i-1, iquo(t, 2)+2)))))
        end:
    a:= n-> (p->coeff(p, x, degree(p)))(b(n$2, 0)):
    seq(a(n), n=0..100);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n==0, If[t>1, x, 1], Expand[If[i<1, 0, If[t>1, x, 1]*b[n, i-1, Quotient[t, 2]] + If[i>n, 0, If[t==2, x, 1] * b[n-i, i-1, Quotient[t, 2]+2]]]]]; a[n_] := Function [p, Coefficient[p, x, Exponent[p, x]]][b[n, n, 0]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

a(n) = A227551(n,A227568(n)).

A247661 The number phi_4(n) of Frobenius partitions that allow up to 4 repetitions of an integer in a row.

Original entry on oeis.org

1, 1, 3, 6, 12, 20, 35, 56, 92, 142, 221, 330, 496, 724, 1056, 1512, 2155, 3028, 4240, 5866, 8085
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2014

Keywords

References

  • George E. Andrews, Generalized Frobenius partitions, Memoirs of the American Mathematical Society, Number 301, May 1984.

Crossrefs

A247662 The number phi_5(n) of Frobenius partitions that allow up to 5 repetitions of an integer in a row.

Original entry on oeis.org

1, 1, 3, 6, 12, 21, 37, 60, 99, 156, 244, 371, 561, 829, 1218, 1763, 2532, 3594, 5068, 7075, 9819
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2014

Keywords

References

  • George E. Andrews, Generalized Frobenius partitions, Memoirs of the American Mathematical Society, Number 301, May 1984.

Crossrefs

Showing 1-6 of 6 results.