Original entry on oeis.org
59, 1519, 7814, 17225, 39079, 950619, 977019, 1280699
Offset: 1
-
Reap[ For[n = 1, n < 10^5, n++, If[ !Divisible[ Denominator[ HypergeometricPFQ[{1, 1, -n}, {2, 2}, -1]], n+1], Print[n]; Sow[n] ] ] ][[2, 1]] (* Jean-François Alcover, Oct 15 2013 *)
-
t=1; for( n=2,10^5, gcd( numerator(t+=(1<1 & print(n-1))
A097344
Numerators in binomial transform of 1/(n+1)^2.
Original entry on oeis.org
1, 5, 29, 103, 887, 1517, 18239, 63253, 332839, 118127, 2331085, 4222975, 100309579, 184649263, 1710440723, 6372905521, 202804884977, 381240382217, 13667257415003, 25872280345103, 49119954154463, 93501887462903, 4103348710010689, 7846225754967739, 75162749477272151
Offset: 0
The first values of the binomial transform of 1/(n+1)^2 are 1, 5/4, 29/18, 103/48, 887/300, 1517/360, 18239/2940, 63253/6720, 332839/22680, 118127/5040, 2331085/60984, ...
-
f:=n->numer(add( binomial(n,k)/(k+1)^2, k=0..n));
-
Table[HypergeometricPFQ[{1, 1, -n}, {2, 2}, -1] // Numerator, {n, 0, 24}] (* Jean-François Alcover, Oct 14 2013 *)
-
a(n):=if n<0 then 1 else 1/((n+1)^2)*((n)*(3*n+1)*a(n-1)-2*(n-1)*(n)*a(n-2)+1);
makelist(num(a(n),n,0,10); /* Vladimir Kruchinin, Jun 01 2016 */
-
A097344(n)=numerator(sum(k=0,n,binomial(n,k)/(k+1)^2)) \\ M. F. Hasler, Jan 25 2008
-
from fractions import Fraction
A097344_list, tlist = [1], [Fraction(1,1)]
for i in range(1,100):
for j in range(len(tlist)):
tlist[j] *= Fraction(i,i-j)
tlist += [Fraction(1,(i+1)**2)]
A097344_list.append(sum(tlist).numerator) # Chai Wah Wu, Jun 04 2015
-
def A097344_list(size):
R, L = [1], [1]
inc = sqr = 1
for i in range(1, size):
for j in range(i):
L[j] *= i / (i - j)
inc += 2; sqr += inc
L.extend(1 / sqr)
R.append(sum(L).numerator())
return R
A097344_list(50) # (after Chai Wah Wu) Peter Luschny, Jun 05 2016
Edited and corrected by Daniel Glasscock (glasscock(AT)rice.edu), Jan 04 2008 and
M. F. Hasler, Jan 25 2008
A097346
Numerators of a Fibonacci related transform of 1/(n+1).
Original entry on oeis.org
1, 2, 9, 24, 170, 240, 2415, 7000, 30744, 45360, 741510, 1108800, 21673080, 32744712, 49684635, 151351200, 3932288360, 6028102080, 176061013128, 271314186000, 419047770960, 648560072160, 23130491854470, 35929017476352
Offset: 0
Showing 1-3 of 3 results.
Comments