A097356 Number of partitions of n into parts not greater than sqrt(n).
1, 1, 1, 1, 3, 3, 4, 4, 5, 12, 14, 16, 19, 21, 24, 27, 64, 72, 84, 94, 108, 120, 136, 150, 169, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 16475, 18138, 19928, 21873, 23961
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
- Vaclav Kotesovec, Graph - the asymptotic ratio
Programs
-
Haskell
a097356 n = p [1..a000196 n] n where p [] _ = 0 p _ 0 = 1 p ks'@(k:ks) m | m < k = 0 | otherwise = p ks' (m - k) + p ks m -- Reinhard Zumkeller, Aug 12 2011
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i)))) end: a:= n-> b(n, (r-> `if`(r*r>n, r-1, r))(isqrt(n))): seq(a(n), n=0..100); # Alois P. Heinz, Aug 02 2018
-
Mathematica
Table[Length[IntegerPartitions[n,Floor[Sqrt[n]]]],{n,70}] (* Harvey P. Dale, May 11 2011 *) f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; Table[ f[n, Floor[Sqrt[n]]], {n, 53}] (* Robert G. Wilson v, Aug 13 2011 *)
-
PARI
a(n,k=sqrtint(n))=if(min(n,k)<2,1,sum(i=1,min(k,n),a(n-i,i))) \\ Charles R Greathouse IV, Aug 12 2011
Formula
a(n^2) ~ c * d^n / n^2, where d = A258268 = 9.153370192454122461948530292401354... and c = 0.1582087202672504149766310999238... [see A206226, constant c(1)]. The upper bound of a(n) is c * d^sqrt(n) / n, see graph. For the lower bound, the constant c = 0.088154883798697116... (conjectured). - Vaclav Kotesovec, Jan 08 2024