cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097356 Number of partitions of n into parts not greater than sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 4, 4, 5, 12, 14, 16, 19, 21, 24, 27, 64, 72, 84, 94, 108, 120, 136, 150, 169, 377, 427, 480, 540, 603, 674, 748, 831, 918, 1014, 1115, 2432, 2702, 3009, 3331, 3692, 4070, 4494, 4935, 5427, 5942, 6510, 7104, 7760, 16475, 18138, 19928, 21873, 23961
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 08 2004

Keywords

Crossrefs

Programs

  • Haskell
    a097356 n = p [1..a000196 n] n where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n, (r-> `if`(r*r>n, r-1, r))(isqrt(n))):
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 02 2018
  • Mathematica
    Table[Length[IntegerPartitions[n,Floor[Sqrt[n]]]],{n,70}] (* Harvey P. Dale, May 11 2011 *)
    f[n_, 1] := 1; f[1, k_] := 1; f[n_, k_] := f[n, k] = If[k > n, f[n, k - 1], f[n, k - 1] + f[n - k, k]]; Table[ f[n, Floor[Sqrt[n]]], {n, 53}] (* Robert G. Wilson v, Aug 13 2011 *)
  • PARI
    a(n,k=sqrtint(n))=if(min(n,k)<2,1,sum(i=1,min(k,n),a(n-i,i))) \\ Charles R Greathouse IV, Aug 12 2011

Formula

a(n^2) ~ c * d^n / n^2, where d = A258268 = 9.153370192454122461948530292401354... and c = 0.1582087202672504149766310999238... [see A206226, constant c(1)]. The upper bound of a(n) is c * d^sqrt(n) / n, see graph. For the lower bound, the constant c = 0.088154883798697116... (conjectured). - Vaclav Kotesovec, Jan 08 2024