cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097385 a(n) = (largest digit of n)^(smallest digit of n) + n.

Original entry on oeis.org

1, 2, 6, 30, 260, 3130, 46662, 823550, 16777224, 387420498, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 21, 23, 26, 32, 40, 50, 62, 76, 92, 110, 31, 34, 41, 60, 98, 160, 252, 380, 550, 768, 41, 45, 58, 107, 300, 670, 1342, 2448, 4144, 6610, 51, 56, 77, 178, 679, 3180
Offset: 0

Views

Author

Jason Earls, Aug 18 2004

Keywords

Examples

			a(2345) = 2370 because 5^2 + 2345 = 2370.
		

Crossrefs

Programs

  • Python
    def a(n): return int(max(s:=str(n)))**int(min(s)) + n
    print([a(n) for n in range(56)]) # Michael S. Branicky, Jul 21 2025

Formula

a(n) = A054055(n)^A054054(n) + n. - Mia Boudreau, Jul 17 2025

Extensions

a(0) corrected and 2 terms merged by Mia Boudreau, Jul 16 2025

A097386 Numbers n such that (largest digit of n)^(smallest digit of n) + n is prime.

Original entry on oeis.org

1, 10, 21, 30, 32, 40, 43, 60, 61, 65, 70, 81, 92, 100, 102, 106, 108, 130, 150, 152, 161, 172, 174, 180, 183, 185, 190, 210, 221, 232, 240, 250, 252, 270, 280, 283, 285, 292, 298, 306, 310, 322, 330, 354, 361, 372, 376, 381, 394, 400, 408, 420, 423, 430, 460
Offset: 1

Views

Author

Jason Earls, Aug 18 2004

Keywords

Comments

No term ends in 9. Conjecture: Let f(x)=(largest digit of x)^(smallest digit of x) + x. There are infinitely many positive integers n such that f(n) and f(n+1) are both prime; see A097387.

Examples

			1272 is in the sequence because 7^2 + 1272 = 1321, a prime.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n]},PrimeQ[Max[idn]^Min[idn]+n]]
    Select[Range[500],okQ] (* Harvey P. Dale, Dec 11 2010 *)

Extensions

Corrected by T. D. Noe, Oct 25 2006
Showing 1-2 of 2 results.