cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097387 Let f(x)=(largest digit of x)^(smallest digit of x) + x (A097385). Sequence gives numbers n such that f(n) and f(n+1) are both prime.

Original entry on oeis.org

60, 460, 640, 820, 1360, 1480, 1620, 1870, 2110, 2380, 3460, 3630, 3880, 4560, 4650, 5640, 5650, 5860, 6210, 6310, 6360, 6420, 7480, 8170, 8680, 8830, 11680, 11830, 12280, 12640, 12820, 13780, 14620, 15460, 15640, 15660, 15880, 16410, 16420
Offset: 1

Views

Author

Jason Earls, Aug 18 2004

Keywords

Comments

Conjecture: Terms will always be multiples of ten. Aug 21, 2004: Dean Hickerson proved this.

Examples

			640 is in the sequence because 6^0 + 640 = 641 and 6^1 + 641 = 647, both prime.
		

Crossrefs

A097386 Numbers n such that (largest digit of n)^(smallest digit of n) + n is prime.

Original entry on oeis.org

1, 10, 21, 30, 32, 40, 43, 60, 61, 65, 70, 81, 92, 100, 102, 106, 108, 130, 150, 152, 161, 172, 174, 180, 183, 185, 190, 210, 221, 232, 240, 250, 252, 270, 280, 283, 285, 292, 298, 306, 310, 322, 330, 354, 361, 372, 376, 381, 394, 400, 408, 420, 423, 430, 460
Offset: 1

Views

Author

Jason Earls, Aug 18 2004

Keywords

Comments

No term ends in 9. Conjecture: Let f(x)=(largest digit of x)^(smallest digit of x) + x. There are infinitely many positive integers n such that f(n) and f(n+1) are both prime; see A097387.

Examples

			1272 is in the sequence because 7^2 + 1272 = 1321, a prime.
		

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{idn=IntegerDigits[n]},PrimeQ[Max[idn]^Min[idn]+n]]
    Select[Range[500],okQ] (* Harvey P. Dale, Dec 11 2010 *)

Extensions

Corrected by T. D. Noe, Oct 25 2006

A386253 a(n) = (smallest digit of n)^(largest digit of n) + n.

Original entry on oeis.org

1, 2, 6, 30, 260, 3130, 46662, 823550, 16777224, 387420498, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 22, 26, 31, 40, 57, 90, 155, 284, 541, 30, 32, 40, 60, 115, 278, 765, 2224, 6599, 19722, 40, 42, 58, 124, 300, 1069, 4142, 16431, 65584, 262193, 50
Offset: 0

Views

Author

Mia Boudreau, Jul 16 2025

Keywords

Comments

0^0 is an indeterminate form, but for the purpose of a(0) it is taken to be 1. - Robert Israel, Jul 22 2025

Examples

			a(563) = 1292 because 3^6 + 563 = 1292.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L; L:= convert(n,base,10); n + min(L)^max(L) end proc:
    map(f, [$0..100]); # Robert Israel, Jul 22 2025
  • Mathematica
    Unprotect[Power]; 0^0:=1; Protect[Power]; a[n_]:= (Min[IntegerDigits[n]])^(Max[IntegerDigits[n]]) + n; Array[a,51,0] (* Stefano Spezia, Jul 17 2025 *)
  • Python
    def a(n): return int(min(s:=str(n)))**int(max(s)) + n
    print([a(n) for n in range(51)]) # Michael S. Branicky, Jul 21 2025

Formula

a(n) = A054054(n)^A054055(n) + n.
Showing 1-3 of 3 results.