cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097417 a(1)=1; a(n+1) = Sum_{k=1..n} a(k) a(floor(n/k)).

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 90, 236, 621, 1629, 4274, 11193, 29337, 76818, 201173, 526730, 1379178, 3610804, 9453695, 24750281, 64798235, 169644626, 444138288, 1162770238, 3044180080, 7969770106, 20865148382, 54625676431, 143011928942
Offset: 1

Views

Author

Leroy Quet, Aug 19 2004

Keywords

Comments

4 is the only composite number n such that a(n+1) = 3a(n) - a(n-1) and if n is a composite number greater than 4 then a(n+1) > 3a(n) - a(n-1). - Farideh Firoozbakht, Feb 05 2005

Crossrefs

Programs

  • Maple
    a[1]:=1: for n from 1 to 50 do: a[n+1]:=sum(a[k]*a[floor(n/k)],k=1..n): od: seq(a[i],i=1..51) # Mark Hudson, Aug 21 2004
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[ a[k]*a[Floor[(n - 1)/k]], {k, n - 1}]; Table[ a[n], {n, 29}] (* Robert G. Wilson v, Aug 21 2004 *)
  • PARI
    {m=29;a=vector(m);print1(a[1]=1,",");for(n=1,m-1,print1(a[n+1]=sum(k=1,n,a[k]*a[floor(n/k)]),","))} \\ Klaus Brockhaus, Aug 21 2004

Formula

Ratio a(n+1)/a(n) seems to tend to 1 + Golden Ratio = 2.61803398... = 1 + A001622. - Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 23 2004
Satisfies the "partial linear recursion": a(prime(n)+1) = 3*a(prime(n)) - a(prime(n)-1). This explains why we get a(n+1)/a(n) -> 1 + phi. Also, lim_{n->oo} a(n)/(1 + phi)^n exists but should not have a simple closed form. - Benoit Cloitre, Aug 29 2004
Limit_{n->oo} a(n)/(1 + phi)^n = 0.108165624886204570982244311730754895284041534583990405146651275318889227986... - Vaclav Kotesovec, May 28 2021

Extensions

More terms from Klaus Brockhaus, Robert G. Wilson v and Mark Hudson (mrmarkhudson(AT)hotmail.com), Aug 21 2004