cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097451 Number of partitions of n into parts congruent to {2, 3, 4} mod 6.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 5, 4, 7, 6, 11, 9, 15, 14, 22, 20, 31, 29, 43, 41, 58, 57, 80, 78, 106, 107, 142, 143, 188, 191, 247, 253, 321, 332, 418, 432, 537, 561, 690, 721, 880, 924, 1118, 1178, 1412, 1493, 1781, 1884, 2231, 2370, 2789, 2965, 3472, 3698, 4309, 4596
Offset: 0

Views

Author

Vladeta Jovovic, Aug 23 2004

Keywords

Comments

Number of partitions of n in which no part is 1, no part appears more than twice and no two parts differ by 1. Example: a(6)=3 because we have [6],[4,2] and [3,3]. - Emeric Deutsch, Feb 16 2006
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(8)=5 because we have [8],[44],[422],[332] and [2222].
G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 5*x^8 + 4*x^9 + ...
G.f. = q^7 + q^55 + q^79 + 2*q^103 + q^127 + 3*q^151 + 2*q^175 + 5*q^199 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, Exercise 7.9.

Crossrefs

Programs

  • Haskell
    a097451 n = p a047228_list n where
       p _  0         = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 16 2012
    
  • Maple
    g:=1/product((1-x^(2+6*j))*(1-x^(3+6*j))*(1-x^(4+6*j)),j=0..15): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=0..67); # Emeric Deutsch, Feb 16 2006
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - Boole[ OddQ[ Quotient[ k + 1, 3]]] x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Sep 24 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^3] QPochhammer[ x^6] / QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Sep 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - ( (k+1)\3 % 2) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Sep 24 2013 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A)), n))}; /* Michael Somos, Sep 24 2013 */

Formula

Euler transform of period 6 sequence [ 0, 1, 1, 1, 0, 0, ...].
G.f.: 1/Product_{j>=0} ((1-x^(2+6j))(1-x^(3+6j))(1-x^(4+6j))). - Emeric Deutsch, Feb 16 2006
Expansion of psi(x^3) / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Sep 24 2013
Expansion of q^(-7/24) * eta(q^6)^2 / (eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Sep 24 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
Expansion of f(-x, -x^5) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 06 2015

Extensions

More terms from Emeric Deutsch, Feb 16 2006