A097495 Subsequence of terms of even index in the Somos-5 sequence.
1, 1, 1, 3, 11, 83, 1217, 22833, 1249441, 68570323, 11548470571, 2279343327171, 979023970244321, 771025645214210753, 816154448855663209121, 2437052403320731070558403, 7362326966302540624120605547
Offset: 0
Keywords
Links
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
- A. N. W. Hone, Elliptic curves and quadratic recurrence sequences, Bull. Lond. Math. Soc. 37 (2005) 161-171.
Programs
-
Mathematica
RecurrenceTable[{a[0]==a[1]==a[2]==1,a[3]==3,a[n]==(a[n-1]a[n-3]+ 8a[n-2]^2)/a[n-4]},a,{n,20}] (* Harvey P. Dale, Sep 14 2013 *) a[ n_] := a[n] = Which[n<1, a[2-n], n<4, {1, 1, 3}[[n]], True, (a[n-1]*a[n-3] + 8*a[n-2]^2)/a[n-4]]; (* Michael Somos, May 12 2022 *)
-
PARI
{a(n) = if(n<1, a(2-n), n<4, [1, 1, 3][n], (a(n-1)*a(n-3) + 8*a(n-2)^2)/a(n-4))}; /* Michael Somos, May 12 2022 */
Formula
a(n) = (a(n-1)*a(n-3) + 8*a(n-2)^2)/a(n-4).
Exact formula: a(n) = A*B^n*sigma(c+n*k)/sigma(k)^(n^2) where sigma is the Weierstrass sigma function associated to the elliptic curve y^2 = 4*x^3 - (121/12)*x + 845/216,
A = 1/sigma(c) = 0.142427718 - 1.037985022*i,
B = sigma(k)*sigma(c)/sigma(c+k)
= 0.341936209 + 0.389300717*i,
c = Integral_{infinity..-19/12} dx/y
= 0.163392410 + 0.973928783*i,
k = Integral_{17/12..infinity} dx/y
= 1.018573545,
all to 9 decimal places.
a(n) = a(2-n) = (-8*a(n-1)*a(n-4) + 57*a(n-2)*a(n-3))/a(n-5) for all n in Z. - Michael Somos, May 12 2022
Comments