cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275416 Triangle read by rows: T(n,k) is the number of multisets of k odd numbers with a cap of the total sum set to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 4, 3, 1, 1, 3, 8, 5, 3, 1, 1, 4, 10, 10, 5, 3, 1, 1, 4, 16, 15, 11, 5, 3, 1, 1, 5, 20, 27, 17, 11, 5, 3, 1, 1, 5, 29, 38, 32, 18, 11, 5, 3, 1, 1, 6, 35, 60, 49, 34, 18, 11, 5, 3, 1, 1, 6, 47, 84, 83, 54, 35, 18, 11, 5, 3, 1, 1, 7, 56, 122, 123
Offset: 1

Views

Author

R. J. Mathar, Jul 27 2016

Keywords

Comments

By considering the partitions of n into k parts we set a cap on the odd numbers of each part and count the multisets (ordered k-tuples) of odd numbers where each number is not larger than the cap of its part.
Multiset transformation of A110654 or A065033.

Examples

			T(6,2) = 3+2+3 = 8 counts {1,1} {1,3}, and {3,3} from taking two odd numbers <= 3; it counts {1,1} and {1,3} from taking an odd number <= 2 and an odd number <= 4; and it counts {1,1}, {1,3} and {1,5} from taking an odd number <= 1 and an odd number <= 5.
T(6,3) = 1+2+2 = 5 counts {1,1,1} from taking three odd numbers <= 2; it counts {1,1,1} and {1,1,3} from taking an odd number <= 1 and an odd number <= 2 and an odd number <= 3; and it counts {1,1,1} and {1,1,3} from taking two odd numbers <= 1 and an odd number <= 4.
  1
  1   1
  2   1   1
  2   3   1   1
  3   4   3   1   1
  3   8   5   3   1   1
  4  10  10   5   3   1   1
  4  16  15  11   5   3   1   1
  5  20  27  17  11   5   3   1   1
  5  29  38  32  18  11   5   3   1   1
  6  35  60  49  34  18  11   5   3   1   1
  6  47  84  83  54  35  18  11   5   3   1   1
  7  56 122 123  94  56  35  18  11   5   3   1   1
  7  72 164 192 146  99  57  35  18  11   5   3   1   1
		

Crossrefs

Cf. A110654 (column 1), A003293 (row sums?), A089353 (equivalent Multiset transformation of A000027), A005232 (2nd column?), A097513 (3rd column?).
T(2n,n) gives A269628.

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
          `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*
           binomial(ceil(i/2)+j-1, j), j=0..min(n/i, p)))))
        end:
    T:= (n, k)-> b(n$2, k):
    seq(seq(T(n, k), k=1..n), n=1..16);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_, i_, p_] := b[n, i, p] = If[p > n, 0, If[n == 0, 1, If[Min[i, p] < 1, 0, Sum[b[n - i*j, i - 1, p - j]*Binomial[Ceiling[i/2] + j - 1, j], {j, 0, Min[n/i, p]}]]]];
    T[n_, k_] := b[n, n, k];
    Table[T[n, k], {n, 1, 16}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)

Formula

T(n,1) = A110654(n).
T(n,k) = Sum_{c_i*N_i=n,i=1..k} binomial(T(N_i,1)+c_i-1,c_i) for 1 < k <= n.
G.f.: Product_{j>=1} (1-y*x^j)^(-ceiling(j/2)). - Alois P. Heinz, Apr 13 2017

A054473 Number of ways of numbering the faces of a cube with nonnegative integers so that the sum of the 6 numbers is n.

Original entry on oeis.org

1, 1, 3, 5, 10, 15, 29, 41, 68, 98, 147, 202, 291, 386, 528, 688, 906, 1151, 1480, 1841, 2310, 2833, 3484, 4207, 5099, 6076, 7259, 8562, 10104, 11796, 13785, 15948, 18462, 21201, 24339, 27747, 31633, 35827, 40572, 45695, 51436, 57618, 64520, 71918
Offset: 0

Views

Author

Vladeta Jovovic, May 20 2000

Keywords

Comments

Here we consider the symmetries of the cube in 3D space (mirror reflections are not allowed), see A097513. - Geoffrey Critzer, Sep 28 2013

Crossrefs

Programs

  • Mathematica
    nn=43;f[x_]=1/(1-x);CoefficientList[Series[1/24 (f[x]^6+6f[x]^2f[x^4]+3f[x]^2f[x^2]^2+8f[x^3]^2+6f[x^2]^3),{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
    LinearRecurrence[{1,2,0,-2,-4,1,3,3,1,-4,-2,0,2,1,-1},{1,1,3,5,10,15,29,41,68,98,147,202,291,386,528},50] (* Harvey P. Dale, Mar 05 2025 *)

Formula

G.f.: (3*x^6+x^5+x^4+1)/((1-x^4)*(1-x^3)^2*(1-x^2)^2*(1-x)).
Showing 1-2 of 2 results.