A097553 Number of positive words of length n in the monoid Br_6 of positive braids on 7 strands.
1, 6, 27, 101, 346, 1131, 3611, 11396, 35761, 111906, 349700, 1092039, 3409031, 10640179, 33206991, 103631414, 323402952, 1009233980, 3149469548, 9828376731, 30670834516, 95712596642, 298684343689, 932085486213, 2908700435744
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-13,17,-17,11,-5,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+x^2)^4/(1-6*x+13*x^2-17*x^3+17*x^4-11*x^5+5*x^6-x^7) )); // G. C. Greubel, Apr 20 2021 -
Mathematica
CoefficientList[Series[(1+n^2)^4/(1-6n+13n^2-17n^3+17n^4-11n^5+5n^6-n^7),{n,0,30}],n] (* Harvey P. Dale, Sep 27 2019 *) LinearRecurrence[{6,-13,17,-17,11,-5,1}, {1,6,27,101,346,1131,3611,11396,35761}, 40] (* G. C. Greubel, Apr 20 2021 *)
-
Sage
def A097553_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^2)^4/(1-6*x+13*x^2-17*x^3+17*x^4-11*x^5+5*x^6-x^7) ).list() A097553_list(50) # G. C. Greubel, Apr 20 2021
Formula
G.f.: (1 +x^2)^4/(1 -6*x +13*x^2 -17*x^3 +17*x^4 -11*x^5 +5*x^6 -x^7).
Extensions
Corrected and extended by Max Alekseyev, Jun 17 2011