A097555 Number of positive words of length n in the monoid Br_8 of positive braids on 9 strands.
1, 8, 45, 205, 831, 3133, 11294, 39585, 136302, 464026, 1568151, 5273999, 17681042, 59149925, 197598856, 659479754, 2199585548, 7333198205, 24441067317, 81444567492, 271360676916, 904051477063, 3011711782025, 10032660556567, 33420042561972
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-25,45,-59,57,-41,21,-7,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) )); // G. C. Greubel, Apr 20 2021 -
Mathematica
LinearRecurrence[{8,-25,45,-59,57,-41,21,-7,1}, {1,8,45,205,831,3133,11294,39585, 136302, 464026, 1568151, 5273999, 17681042}, 41] (* G. C. Greubel, Apr 20 2021 *)
-
Sage
def A097555_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x^2)^6 /(1-8*x+25*x^2-45*x^3+59*x^4-57*x^5+41*x^6-21*x^7+7*x^8-x^9) ).list() A097555_list(40) # G. C. Greubel, Apr 20 2021
Formula
G.f.: (1 +x^2)^6 /(1 -8*x +25*x^2 -45*x^3 +59*x^4 -57*x^5 +41*x^6 -21*x^7 +7*x^8 -x^9).
Extensions
Edited and extended by Max Alekseyev, Jun 17 2011