cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A097639 a(n) is the smallest number m such that for the n-digit number s=10^(n-1)+ m, 10*s+1, 10*s+3, 10*s+7 and 10*s+9 are primes.

Original entry on oeis.org

0, 0, 48, 300, 111, 234, 1395, 546, 2526, 5742, 753, 12369, 5658, 94572, 6744, 134649, 32523, 43071, 213927, 256116, 8172, 431904, 57138, 433125, 123225, 711447, 318501, 40758, 150063, 184602, 134661, 377778, 129048, 504678, 88113, 3174738
Offset: 1

Views

Author

Farideh Firoozbakht, Aug 18 2004

Keywords

Comments

a(50)= 10718757, can you find a(100)?

Examples

			a(4)=300 because 10(10^3+300)+ 1, 10(10^3+300)+ 3, 10(10^3+300)+ 7 and 10(10^3+300)+1, are primes and 300 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=(For[m=0, !(PrimeQ[10^n+10m+1]&&PrimeQ[10^n+10m+3]&&PrimeQ[ 10^n+10m+7]&&PrimeQ[10^n+10m+9]), m++ ];m);Table[a[n], {n, 43}]
    Table[Module[{m=0,s=10^n},While[AnyTrue[10(s+m)+{1,3,7,9},CompositeQ],m++];m],{n,0,35}] (* Harvey P. Dale, Sep 19 2022 *)
  • PARI
    isok(m, n) = my(s=10^(n-1)+ m); ispseudoprime(10*s+1) && ispseudoprime(10*s+3) && ispseudoprime(10*s+7) && ispseudoprime(10*s+9);
    a(n) = my(m=0); while (!isok(m, n), m++); m; \\ Michel Marcus, Aug 09 2023

Formula

a(n) = A097638(n) - 10^(n-1).