A097676 Decimal expansion of the constant 8*exp(psi(7/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.
6, 3, 7, 6, 6, 3, 2, 4, 8, 9, 4, 1, 6, 6, 7, 7, 8, 5, 5, 0, 0, 1, 7, 6, 2, 5, 9, 3, 8, 2, 5, 1, 0, 7, 9, 0, 6, 2, 6, 7, 4, 3, 5, 3, 2, 6, 7, 8, 6, 4, 6, 2, 1, 6, 7, 6, 7, 3, 0, 6, 4, 1, 0, 7, 4, 3, 4, 2, 6, 4, 5, 4, 9, 1, 5, 2, 5, 9, 9, 9, 3, 9, 0, 8, 8, 3, 3, 7, 3, 3, 1, 6, 4, 3, 8, 3, 2, 7, 6, 5, 5, 5, 3, 4, 9
Offset: 1
Examples
c = 6.37663248941667785500176259382510790626743532678646216767306...
References
- A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Benoit Cloitre, On a generalization of Euler-Gauss formula for the Gamma function, preprint 2004.
- Xavier Gourdon and Pascal Sebah, Introduction to the Gamma Function.
- Andrew Odlyzko, Asymptotic enumeration methods, in Handbook of Combinatorics, vol. 2, 1995, pp. 1063-1229.
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); (1+Sqrt(2))^(-Sqrt(2))/2*Exp(Pi(R)/2*(1+Sqrt(2))); // G. C. Greubel, Sep 07 2018
-
Mathematica
RealDigits[(1 + Sqrt[2])^(-Sqrt[2])/2E^(Pi/2*(1 + Sqrt[2])), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
-
PARI
8*exp(psi(7/8)+Euler)
Formula
c = (1+sqrt(2))^(-sqrt(2))/2*exp(Pi/2*(1+sqrt(2))).
Extensions
More terms from Robert G. Wilson v, Aug 27 2004
Comments