A097691 Denominators of the continued fraction n-1/(n-1/...) [n times].
1, 2, 8, 56, 551, 6930, 105937, 1905632, 39424240, 922080050, 24057287759, 692686638072, 21817946138353, 746243766783074, 27543862067299424, 1091228270370045824, 46187969968474139807, 2080128468827570457762, 99318726126650358502921, 5011361251329169946919800
Offset: 1
Examples
a(4) = 56 because 4-1/(4-1/(4-1/4)) = 209/56.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..387
- Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 8, 22.
- Pascual Jara and Miguel L. RodrÃguez, Solving quadratic congruences, Arhimede Math. J. (2020) Vol. 7, No. 2, 105-120.
- Eric Weisstein's World of Mathematics, Lucas Sequence
Programs
-
Mathematica
Table[s=n; Do[s=n-1/s, {n-1}]; Denominator[s], {n, 20}] Table[Abs[Fibonacci[n, I n]], {n, 20}] (* Vladimir Reshetnikov, Oct 16 2018 *)
-
Sage
[lucas_number1(n,n,1) for n in range(1,19)] # Zerinvary Lajos, Jul 16 2008
Formula
a(n) = ChebyshevU(n-1,n/2). - Gary Detlefs, Oct 15 2011
a(n) = abs((2^(-n) * (sqrt(4 - n^2) + i*n)^n - 2^n*(-sqrt(4 - n^2) - i*n)^(-n))/sqrt(4 - n^2)), where i is the imaginary unit, for n > 2. - Daniel Suteu, May 31 2017
a(n) ~ n^(n-1). - Vaclav Kotesovec, Jun 03 2017
Comments