cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A185221 E.g.f. is solution to y = 1 + log(1 + x*y) in powers of x.

Original entry on oeis.org

1, 1, 1, -1, -10, -6, 294, 1350, -14624, -197568, 703800, 34790040, 100585968, -7259053296, -85604489712, 1588693382640, 46549054391040, -216669088277760, -24865626969568512, -159153249738896640, 13379663931502199040
Offset: 0

Views

Author

Michael Somos, Jan 24 2012

Keywords

Examples

			y = 1 + x + 1/2*x^2 - 1/6*x^3 - 5/12*x^4 - 1/20*x^5 + 49/120*x^6 + 15/56*x^7 + ...
		

Crossrefs

Programs

  • Maxima
    a(n):=if n=0 then 1 else sum(binomial(n+k+1,n) * sum((-1)^(j) * binomial(k+1,j) * sum((-1)^i * i! * binomial(j+i-1,j-1) * stirling1(n,i), i,1,n), j,1,k+1), k,0,n) / (n+1); /* Vladimir Kruchinin, Mar 29 2013 */
  • PARI
    {a(n) = local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = 1 + log(1 + x * A)); n! * polcoeff( A, n))}
    

Formula

E.g.f. is solution to y = y' * (1 - x + x*y).
a(n) = sum(k=0..n, binomial(n+k+1,n) * sum(j=1..k+1, (-1)^(j) * binomial(k+1,j) * sum(i=1..n, (-1)^i * i! * binomial(j+i-1,j-1) * stirling1(n,i)))) / (n+1), n>0, a(0)=1. [Vladimir Kruchinin, Mar 29 2013]
Lim sup n->infinity (|a(n)|/n!)^(1/n) = abs(LambertW(-1)) = 1.37455701074370748653... (see A238274). - Vaclav Kotesovec, Feb 24 2014
a(n) = n! * Sum_{k=0..n} Stirling1(n,k)/(n-k+1)!. - Seiichi Manyama, Nov 07 2023

A367153 E.g.f. satisfies A(x) = 2 - exp(-x*A(x)^2).

Original entry on oeis.org

1, 1, 3, 13, 55, -59, -8869, -230019, -4735569, -81845819, -925266221, 11304277117, 1342388191079, 64570153427781, 2378028350945547, 68237841920780221, 1044508709568828511, -45901762542718407035, -5887687395597254917885, -396339747040666473203907
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (2*n)!*sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)/(2*n-k+1)!);

Formula

a(n) = (2*n)! * Sum_{k=0..n} (-1)^(n-k) * Stirling2(n,k)/(2*n-k+1)!.

A367154 E.g.f. satisfies A(x) = 2 - exp(-x*A(x)^3).

Original entry on oeis.org

1, 1, 5, 46, 611, 10486, 217817, 5232298, 139988039, 4014151966, 116960920469, 3089842957378, 42760230799211, -3590078035238330, -540748879852479439, -53293187072033883494, -4741372656403996001905, -409753919036526362138834
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (3*n)!*sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)/(3*n-k+1)!);

Formula

a(n) = (3*n)! * Sum_{k=0..n} (-1)^(n-k) * Stirling2(n,k)/(3*n-k+1)!.

A375902 E.g.f. satisfies A(x) = (2 - exp(x * A(x)^(1/2)))^2.

Original entry on oeis.org

1, -2, 4, -2, -52, 358, 12, -25986, 247228, 821398, -52933300, 534428926, 6201248220, -271179578490, 2375560802188, 75726973445374, -2740636867741828, 14280527041851958, 1501820173046702796, -46939564687781824002, -67963035486950641508
Offset: 0

Views

Author

Seiichi Manyama, Sep 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((serreverse(x/(2-exp(x)))/x)^2))
    
  • PARI
    a(n) = 2*(n+1)!*sum(k=0, n, (-1)^k*stirling(n, k, 2)/(n-k+2)!);

Formula

E.g.f.: A(x) = ( (1/x) * Series_Reversion(x / (2 - exp(x))) )^2.
a(n) = 2 * (n+1)! * Sum_{k=0..n} (-1)^k * Stirling2(n,k)/(n-k+2)!.

A375903 E.g.f. satisfies A(x) = (2 - exp(x * A(x)^(1/3)))^3.

Original entry on oeis.org

1, -3, 9, -18, -57, 942, -4299, -33078, 786267, -4357818, -84919647, 2153185746, -9754462833, -539983739298, 13389257569005, -13826647549926, -6661768436593725, 153336015047780790, 938088731006163417, -139051687661849130654, 2787586449012275332023
Offset: 0

Views

Author

Seiichi Manyama, Sep 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((serreverse(x/(2-exp(x)))/x)^3))
    
  • PARI
    a(n) = 3*(n+2)!*sum(k=0, n, (-1)^k*stirling(n, k, 2)/(n-k+3)!);

Formula

E.g.f.: A(x) = ( (1/x) * Series_Reversion(x / (2 - exp(x))) )^3.
a(n) = 3 * (n+2)! * Sum_{k=0..n} (-1)^k * Stirling2(n,k)/(n-k+3)!.
Showing 1-5 of 5 results.