cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A097772 Pell equation solutions (13*a(n))^2 - 170*b(n)^2 = -1 with b(n):=A097771(n), n >= 0.

Original entry on oeis.org

1, 679, 460361, 312124079, 211619665201, 143477820882199, 97277750938465721, 65954171658458876639, 44716831106684179895521, 30317945536160215510286599, 20555522356685519431794418601, 13936613839887246014541105524879
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (13*1=13;1), (8827=13*679;677), (5984693=13*460361;459005), ... give the positive integer solutions to x^2 - 170*y^2 =-1.
		

Crossrefs

Cf. A097771 for S(n, 2*339).
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Mathematica
    LinearRecurrence[{678, -1}, {1, 679}, 12] (* Ray Chandler, Aug 12 2015 *)
  • PARI
    x='x+O('x^99); Vec((1+x)/(1-2*339*x+x^2)) \\ Altug Alkan, Apr 05 2018

Formula

G.f.: (1 + x)/(1 - 2*339*x + x^2).
a(n) = S(n, 2*339) + S(n-1, 2*339) = S(2*n, 2*sqrt(170)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 13*i)/(13*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 678*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=679. - Philippe Deléham, Nov 18 2008
a(n) = (1/13)*sinh((2*n + 1)*arcsinh(13)). - Bruno Berselli, Apr 05 2018

A097773 Pell equation solutions (13*b(n))^2 - 170*a(n)^2 = -1 with b(n):=A097772(n), n >= 0.

Original entry on oeis.org

1, 677, 459005, 311204713, 210996336409, 143055204880589, 96991217912702933, 65759902689607707985, 44585117032336113310897, 30228643588021195217080181, 20494975767561338021067051821, 13895563341762999157088244054457
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (13*1=13;1), (8827=13*679;677), (5984693=13*460361;459005), ... give the positive integer solutions to x^2 - 170*y^2 =-1.
		

Crossrefs

Cf. A097771 for S(n, 678).
Row 13 of array A188647.

Programs

  • GAP
    a:=[1,677];; for n in [3..20] do a[n]:=678*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1,677]; [n le 2 select I[n] else 678*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    LinearRecurrence[{678, -1},{1, 677},11] (* Ray Chandler, Aug 12 2015 *)
  • PARI
    my(x='x+O('x^20)); Vec((1-x)/(1-678*x+x^2)) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    ((1-x)/(1-678*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

a(n) = ((-1)^n)*S(2*n, 26*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-678*x+x^2).
a(n) = S(n, 2*339) - S(n-1, 2*339) = T(2*n+1, sqrt(170))/sqrt(170), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = 678*a(n-1) - a(n-2), n>1; a(0)=1, a(1)=677. - Philippe Deléham, Nov 18 2008
Showing 1-2 of 2 results.